import gradio as gr import os from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline import torch # Define the model repository REPO_NAME = 'schuler/experimental-JP47D20' # REPO_NAME = 'schuler/experimental-JP47D21-KPhi-3-micro-4k-instruct' # How to cache? def load_model(repo_name): tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True) generator_conf = GenerationConfig.from_pretrained(repo_name) model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True, torch_dtype=torch.bfloat16) return tokenizer, generator_conf, model tokenizer, generator_conf, model = load_model(REPO_NAME) global_error = '' try: generator = pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: global_error = f"Failed to load model: {str(e)}" def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): result = 'none' try: # Build the conversation prompt prompt = '' messages = [] if (len(system_message)>0): prompt = "<|assistant|>"+system_message+f"<|end|>\n" for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) for message in messages: role = "<|assistant|>" if message['role'] == 'assistant' else "<|user|>" prompt += f"\n{role}\n{message['content']}\n<|end|>\n" prompt += f"\n<|user|>\n{user_text}\n<|end|><|assistant|>\n" """ # Generate the response response_output = generator( prompt, generation_config=generator_conf, max_new_tokens=64, do_sample=True, top_p=0.25, repetition_penalty=1.2 ) generated_text = response_output[0]['generated_text'] # st.session_state.last_response = generated_text # Extract the assistant's response result = generated_text[len(prompt):].strip() """ result = prompt except Exception as error: result = str(error) yield result """ for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot." + global_error, label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()