import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import spaces class LlamaGuardModeration: def __init__(self): self.model = None self.tokenizer = None self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model_id = "meta-llama/Llama-Guard-3-8B" self.dtype = torch.bfloat16 # HuggingFace tokenの取得 self.huggingface_token = os.getenv('HUGGINGFACE_TOKEN') if not self.huggingface_token: raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") # モデルの初期化 self.initialize_model() def initialize_model(self): """モデルとトークナイザーの初期化""" if self.model is None: # トークナイザーの初期化 self.tokenizer = AutoTokenizer.from_pretrained( self.model_id, token=self.huggingface_token ) # モデルの初期化(bitsandbytesなし) self.model = AutoModelForCausalLM.from_pretrained( self.model_id, torch_dtype=self.dtype, device_map="auto", token=self.huggingface_token, low_cpu_mem_usage=True ) @staticmethod def parse_llama_guard_output(result): """Llama Guardの出力を解析""" safety_assessment = result.split("")[-1].strip() lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()] if not lines: return "Error", "No valid output", safety_assessment safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None) if safety_status == 'safe': return "Safe", "None", safety_assessment elif safety_status == 'unsafe': violated_categories = next( (lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), "Unspecified" ) return "Unsafe", violated_categories, safety_assessment else: return "Error", f"Invalid output: {safety_status}", safety_assessment @spaces.GPU def moderate(self, user_input, assistant_response): """モデレーション実行""" chat = [ {"role": "user", "content": user_input}, {"role": "assistant", "content": assistant_response}, ] input_ids = self.tokenizer.apply_chat_template( chat, return_tensors="pt" ).to(self.device) with torch.no_grad(): output = self.model.generate( input_ids=input_ids, max_new_tokens=200, pad_token_id=self.tokenizer.eos_token_id, do_sample=False ) result = self.tokenizer.decode(output[0], skip_special_tokens=True) return self.parse_llama_guard_output(result) # モデレーターのインスタンス作成 moderator = LlamaGuardModeration() # Gradio インターフェースの設定 iface = gr.Interface( fn=moderator.moderate, inputs=[ gr.Textbox(lines=3, label="User Input"), gr.Textbox(lines=3, label="Assistant Response") ], outputs=[ gr.Textbox(label="Safety Status"), gr.Textbox(label="Violated Categories"), gr.Textbox(label="Raw Output") ], title="Llama Guard Moderation", description="Enter a user input and an assistant response to check for content moderation." ) if __name__ == "__main__": iface.launch()