# import gradio as gr # gr.Interface.load("models/NousResearch/Yarn-Mistral-7b-128k").launch() import gradio as gr from transformers import pipeline # Load a small GPT model fine-tuned for Python code generation # generator = pipeline('text-generation', model='microsoft/CodeGPT-small-py') generator = pipeline('text-generation', model='NousResearch/Yarn-Mistral-7b-128k') def generate_code(prompt): # Generate code from the model responses = generator(prompt, max_length=500, num_return_sequences=1, temperature=0.1) return responses[0]['generated_text'] input_textbox = gr.Textbox(label="Please click any button below or enter the last 4 digits of your Amazon.in order-id, name and email along with your questions. We shall get back to you!", lines=3) outputs = gr.Markdown(label="Generated Code") title = "Schogini Toys - AI Chatbot V2.03" # Create a Gradio Interface iface = gr.Interface( fn=generate_code, inputs=input_textbox, #[gr.Textbox(lines=10, label="Type your code description here")], outputs=outputs, #[gr.Textbox(label="Generated Code")], examples=[["Define a Python function to calculate factorial."]], title=title, ) # Run the interface if __name__ == "__main__": iface.launch()