# PyTorch implementation of Darknet # This is a custom, hard-coded version of darknet with # YOLOv3 implementation for openimages database. This # was written to test viability of implementing YOLO # for face detection followed by emotion / sentiment # analysis. # # Configuration, weights and data are hardcoded. # Additional options include, ability to create # subset of data with faces exracted for labelling. # # Author : Saikiran Tharimena # Co-Authors: Kjetil Marinius Sjulsen, Juan Carlos Calvet Lopez # Project : Emotion / Sentiment Detection from news images # Date : 12 September 2022 # Version : v0.1 # # (C) Schibsted ASA import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np import cv2 def unique(tensor): tensor_np = tensor.cpu().numpy() unique_np = np.unique(tensor_np) unique_tensor = torch.from_numpy(unique_np) tensor_res = tensor.new(unique_tensor.shape) tensor_res.copy_(unique_tensor) return tensor_res def bbox_iou(box1, box2): """ Returns the IoU of two bounding boxes """ #Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] #get the corrdinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) #Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0) #Union Area b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area) return iou def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True): batch_size = prediction.size(0) stride = inp_dim // prediction.size(2) grid_size = inp_dim // stride bbox_attrs = 5 + num_classes num_anchors = len(anchors) prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size) prediction = prediction.transpose(1,2).contiguous() prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs) anchors = [(a[0]/stride, a[1]/stride) for a in anchors] #Sigmoid the centre_X, centre_Y. and object confidencce prediction[:,:,0] = torch.sigmoid(prediction[:,:,0]) prediction[:,:,1] = torch.sigmoid(prediction[:,:,1]) prediction[:,:,4] = torch.sigmoid(prediction[:,:,4]) #Add the center offsets grid = np.arange(grid_size) a,b = np.meshgrid(grid, grid) x_offset = torch.FloatTensor(a).view(-1,1) y_offset = torch.FloatTensor(b).view(-1,1) if CUDA: x_offset = x_offset.cuda() y_offset = y_offset.cuda() x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0) prediction[:,:,:2] += x_y_offset #log space transform height and the width anchors = torch.FloatTensor(anchors) if CUDA: anchors = anchors.cuda() anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0) prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes])) prediction[:,:,:4] *= stride return prediction def write_results(prediction, confidence, num_classes, nms_conf = 0.4): conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2) prediction = prediction*conf_mask box_corner = prediction.new(prediction.shape) box_corner[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2) box_corner[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2) box_corner[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2) box_corner[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2) prediction[:,:,:4] = box_corner[:,:,:4] batch_size = prediction.size(0) write = False for ind in range(batch_size): image_pred = prediction[ind] #image Tensor #confidence threshholding #NMS max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1) max_conf = max_conf.float().unsqueeze(1) max_conf_score = max_conf_score.float().unsqueeze(1) seq = (image_pred[:,:5], max_conf, max_conf_score) image_pred = torch.cat(seq, 1) non_zero_ind = (torch.nonzero(image_pred[:,4])) try: image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7) except: continue if image_pred_.shape[0] == 0: continue # #Get the various classes detected in the image img_classes = unique(image_pred_[:,-1]) # -1 index holds the class index for cls in img_classes: #perform NMS #get the detections with one particular class cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1) class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze() image_pred_class = image_pred_[class_mask_ind].view(-1,7) #sort the detections such that the entry with the maximum objectness #confidence is at the top conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1] image_pred_class = image_pred_class[conf_sort_index] idx = image_pred_class.size(0) #Number of detections for i in range(idx): #Get the IOUs of all boxes that come after the one we are looking at #in the loop try: ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:]) except ValueError: break except IndexError: break #Zero out all the detections that have IoU > treshhold iou_mask = (ious < nms_conf).float().unsqueeze(1) image_pred_class[i+1:] *= iou_mask #Remove the non-zero entries non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze() image_pred_class = image_pred_class[non_zero_ind].view(-1,7) batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind) #Repeat the batch_id for as many detections of the class cls in the image seq = batch_ind, image_pred_class if not write: output = torch.cat(seq,1) write = True else: out = torch.cat(seq,1) output = torch.cat((output,out)) try: return output except: return 0 def letterbox_image(img, inp_dim): '''resize image with unchanged aspect ratio using padding''' img_w, img_h = img.shape[1], img.shape[0] w, h = inp_dim new_w = int(img_w * min(w/img_w, h/img_h)) new_h = int(img_h * min(w/img_w, h/img_h)) resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC) canvas = np.full((inp_dim[1], inp_dim[0], 3), 128) canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image return canvas def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ img = (letterbox_image(img, (inp_dim, inp_dim))) img = img[:,:,::-1].transpose((2,0,1)).copy() img = torch.from_numpy(img).float().div(255.0).unsqueeze(0) return img def load_classes(namesfile): fp = open(namesfile, "r") names = fp.read().split("\n")[:-1] return names