import streamlit as st import get_results import pandas as pd import pipelineoperation import json import insert_data #st.image("/home/sankalp-user/Pictures/schematiselda.png") st.write("

Please visit the detailed blog post and Data Analytics Platform for more and; See more by Schematise on Linktree
Buy Me A Coffee

", unsafe_allow_html=True) st.image("./ikanoon6_powered_transparent.png") #st.write(" SEE THE QUERY COMPETITION RULES HERE ", unsafe_allow_html=True) #st.image("./") st.title("Get example contract clauses - ICAT Query Pipeline (BETA)") searchquery = st.text_input("Search query for type of contracts e.g. 'arbitration', 'termination', 'trademark licensing'") results = get_results.main(searchquery) #st.dataframe(results) df = pd.DataFrame(results) dict_results = df.to_dict('records') st.button("Generate/View results after text-classification") # Serialize and write the dictionary to a file with open("Dict_Results.txt", "w") as fn: json.dump(dict_results, fn) if st.button: results_from_classifier = pipelineoperation.pipeline_operations(dict_results) else: results_from_classifier = {} with open ("ResultsAfterClassification.txt", "w") as fn: fn.write(str(results_from_classifier)) try: dict_from_classified_results = [{'Title': result['Title'], 'Matching clauses': result['matching_columns_after_classification'] + result['matching_indents_after_classification'] } for result in results_from_classifier] filtered_data_list = [item for item in dict_from_classified_results if item.get('Matching clauses')] df_to_display = pd.DataFrame(filtered_data_list) st.dataframe(df_to_display) insert_data.add_classified_results(results_from_classifier, searchquery) except Exception as e: print(f"Error code: {e}") st.write("Error: Click on the generate button if you haven't already")