from datasets import load_dataset as _load_dataset from os import environ from PIL import Image import numpy as np import json from pyarrow.parquet import ParquetFile from pyarrow import Table as pa_Table from datasets import Dataset DATASET = "satellogic/EarthView" sets = { "satellogic": { "shards" : 3676, }, "sentinel_1": { "shards" : 1763, }, "neon": { "config" : "default", "shards" : 607, "path" : "data", } } def get_subsets(): return sets.keys() def get_nshards(subset): return sets[subset]["shards"] def get_path(subset): return sets[subset].get("path", subset) def get_config(subset): return sets[subset].get("config", subset) def load_dataset(subset, dataset="satellogic/EarthView", split="train", shards = None, streaming=True, **kwargs): config = get_config(subset) nshards = get_nshards(subset) path = get_path(subset) if shards is None: data_files = None else: data_files = [f"{path}/{split}-{shard:05d}-of-{nshards:05d}.parquet" for shard in shards] data_files = {split: data_files} ds = _load_dataset( path=dataset, name=config, save_infos=True, split=split, data_files=data_files, streaming=streaming, token=environ.get("HF_TOKEN", None), **kwargs) return ds def load_parquet(subset_or_filename, batch_size=100): if subset_or_filename in get_subsets(): filename = f"dataset/{subset_or_filename}/sample.parquet" else: filename = subset_or_filename pqfile = ParquetFile(filename) batch = pqfile.iter_batches(batch_size=batch_size) return Dataset(pa_Table.from_batches(batch)) def item_to_images(subset, item): """ Converts the images within an item (arrays), as retrieved from the dataset to proper PIL.Image subset: The name of the Subset, one of "satellogic", "default", "sentinel-1" item: The item as retrieved from the subset returns the item, with arrays converted to PIL.Image """ metadata = item["metadata"] if type(metadata) == str: metadata = json.loads(metadata) item = { k: np.asarray(v).astype("uint8") for k,v in item.items() if k != "metadata" } item["metadata"] = metadata if subset == "satellogic": # item["rgb"] = [ # Image.fromarray(np.average(image.transpose(1,2,0), 2).astype("uint8")) # for image in item["rgb"] # ] rgbs = [] for rgb in item["rgb"]: rgbs.append(Image.fromarray(rgb.transpose(1,2,0))) # rgbs.append(Image.fromarray(rgb[0,:,:])) # Red # rgbs.append(Image.fromarray(rgb[1,:,:])) # Green # rgbs.append(Image.fromarray(rgb[2,:,:])) # Blue item["rgb"] = rgbs item["1m"] = [ Image.fromarray(image[0,:,:]) for image in item["1m"] ] count = len(item["1m"]) elif subset == "sentinel_1": # Mapping of V and H to RGB. May not be correct # https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels i10m = item["10m"] i10m = np.concatenate( ( i10m, np.expand_dims( i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256, 1 ).astype("uint8") ), 1 ) item["10m"] = [ Image.fromarray(image.transpose(1,2,0)) for image in i10m ] count = len(item["10m"]) elif subset == "neon": item["rgb"] = [ Image.fromarray(image.transpose(1,2,0)) for image in item["rgb"] ] item["chm"] = [ Image.fromarray(image[0]) for image in item["chm"] ] # The next is a very arbitrary conversion from the 369 hyperspectral data to RGB # It just averages each 1/3 of the bads and assigns it to a channel item["1m"] = [ Image.fromarray( np.concatenate(( np.expand_dims(np.average(image[:124],0),2), np.expand_dims(np.average(image[124:247],0),2), np.expand_dims(np.average(image[247:],0),2)) ,2).astype("uint8")) for image in item["1m"] ] count = len(item["rgb"]) item["metadata"]["count"] = count return item