# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) # Adapted by Florian Lux, 2021 import torch import torch.nn.functional as F from ..Utility.utils import make_pad_mask from ..Utility.utils import to_device def _apply_attention_constraint(e, last_attended_idx, backward_window=1, forward_window=3): """ Apply monotonic attention constraint. This function apply the monotonic attention constraint introduced in `Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`_. Args: e (Tensor): Attention energy before applying softmax (1, T). last_attended_idx (int): The index of the inputs of the last attended [0, T]. backward_window (int, optional): Backward window size in attention constraint. forward_window (int, optional): Forward window size in attetion constraint. Returns: Tensor: Monotonic constrained attention energy (1, T). .. _`Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`: https://arxiv.org/abs/1710.07654 """ if e.size(0) != 1: raise NotImplementedError("Batch attention constraining is not yet supported.") backward_idx = last_attended_idx - backward_window forward_idx = last_attended_idx + forward_window if backward_idx > 0: e[:, :backward_idx] = -float("inf") if forward_idx < e.size(1): e[:, forward_idx:] = -float("inf") return e class AttLoc(torch.nn.Module): """ location-aware attention module. Reference: Attention-Based Models for Speech Recognition (https://arxiv.org/pdf/1506.07503.pdf) :param int eprojs: # projection-units of encoder :param int dunits: # units of decoder :param int att_dim: attention dimension :param int aconv_chans: # channels of attention convolution :param int aconv_filts: filter size of attention convolution :param bool han_mode: flag to switch on mode of hierarchical attention and not store pre_compute_enc_h """ def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False): super(AttLoc, self).__init__() self.mlp_enc = torch.nn.Linear(eprojs, att_dim) self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False) self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False) self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, ) self.gvec = torch.nn.Linear(att_dim, 1) self.dunits = dunits self.eprojs = eprojs self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.han_mode = han_mode def reset(self): """reset states""" self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None def forward(self, enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0, last_attended_idx=None, backward_window=1, forward_window=3): """ Calculate AttLoc forward propagation. :param torch.Tensor enc_hs_pad: padded encoder hidden state (B x T_max x D_enc) :param list enc_hs_len: padded encoder hidden state length (B) :param torch.Tensor dec_z: decoder hidden state (B x D_dec) :param torch.Tensor att_prev: previous attention weight (B x T_max) :param float scaling: scaling parameter before applying softmax :param torch.Tensor forward_window: forward window size when constraining attention :param int last_attended_idx: index of the inputs of the last attended :param int backward_window: backward window size in attention constraint :param int forward_window: forward window size in attention constraint :return: attention weighted encoder state (B, D_enc) :rtype: torch.Tensor :return: previous attention weights (B x T_max) :rtype: torch.Tensor """ batch = len(enc_hs_pad) # pre-compute all h outside the decoder loop if self.pre_compute_enc_h is None or self.han_mode: self.enc_h = enc_hs_pad # utt x frame x hdim self.h_length = self.enc_h.size(1) # utt x frame x att_dim self.pre_compute_enc_h = self.mlp_enc(self.enc_h) if dec_z is None: dec_z = enc_hs_pad.new_zeros(batch, self.dunits) else: dec_z = dec_z.view(batch, self.dunits) # initialize attention weight with uniform dist. if att_prev is None: # if no bias, 0 0-pad goes 0 att_prev = 1.0 - make_pad_mask(enc_hs_len, device=dec_z.device).to(dtype=dec_z.dtype) att_prev = att_prev / att_prev.new(enc_hs_len).unsqueeze(-1) # att_prev: utt x frame -> utt x 1 x 1 x frame # -> utt x att_conv_chans x 1 x frame att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length)) # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans att_conv = att_conv.squeeze(2).transpose(1, 2) # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim att_conv = self.mlp_att(att_conv) # dec_z_tiled: utt x frame x att_dim dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim) # dot with gvec # utt x frame x att_dim -> utt x frame e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2) # NOTE: consider zero padding when compute w. if self.mask is None: self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len)) e.masked_fill_(self.mask, -float("inf")) # apply monotonic attention constraint (mainly for TTS) if last_attended_idx is not None: e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) w = F.softmax(scaling * e, dim=1) # weighted sum over flames # utt x hdim c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1) return c, w class AttForwardTA(torch.nn.Module): """Forward attention with transition agent module. Reference: Forward attention in sequence-to-sequence acoustic modeling for speech synthesis (https://arxiv.org/pdf/1807.06736.pdf) :param int eunits: # units of encoder :param int dunits: # units of decoder :param int att_dim: attention dimension :param int aconv_chans: # channels of attention convolution :param int aconv_filts: filter size of attention convolution :param int odim: output dimension """ def __init__(self, eunits, dunits, att_dim, aconv_chans, aconv_filts, odim): super(AttForwardTA, self).__init__() self.mlp_enc = torch.nn.Linear(eunits, att_dim) self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False) self.mlp_ta = torch.nn.Linear(eunits + dunits + odim, 1) self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False) self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, ) self.gvec = torch.nn.Linear(att_dim, 1) self.dunits = dunits self.eunits = eunits self.att_dim = att_dim self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.trans_agent_prob = 0.5 def reset(self): self.h_length = None self.enc_h = None self.pre_compute_enc_h = None self.mask = None self.trans_agent_prob = 0.5 def forward(self, enc_hs_pad, enc_hs_len, dec_z, att_prev, out_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3): """ Calculate AttForwardTA forward propagation. :param torch.Tensor enc_hs_pad: padded encoder hidden state (B, Tmax, eunits) :param list enc_hs_len: padded encoder hidden state length (B) :param torch.Tensor dec_z: decoder hidden state (B, dunits) :param torch.Tensor att_prev: attention weights of previous step :param torch.Tensor out_prev: decoder outputs of previous step (B, odim) :param float scaling: scaling parameter before applying softmax :param int last_attended_idx: index of the inputs of the last attended :param int backward_window: backward window size in attention constraint :param int forward_window: forward window size in attetion constraint :return: attention weighted encoder state (B, dunits) :rtype: torch.Tensor :return: previous attention weights (B, Tmax) :rtype: torch.Tensor """ batch = len(enc_hs_pad) # pre-compute all h outside the decoder loop if self.pre_compute_enc_h is None: self.enc_h = enc_hs_pad # utt x frame x hdim self.h_length = self.enc_h.size(1) # utt x frame x att_dim self.pre_compute_enc_h = self.mlp_enc(self.enc_h) if dec_z is None: dec_z = enc_hs_pad.new_zeros(batch, self.dunits) else: dec_z = dec_z.view(batch, self.dunits) if att_prev is None: # initial attention will be [1, 0, 0, ...] att_prev = enc_hs_pad.new_zeros(*enc_hs_pad.size()[:2]) att_prev[:, 0] = 1.0 # att_prev: utt x frame -> utt x 1 x 1 x frame # -> utt x att_conv_chans x 1 x frame att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length)) # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans att_conv = att_conv.squeeze(2).transpose(1, 2) # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim att_conv = self.mlp_att(att_conv) # dec_z_tiled: utt x frame x att_dim dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim) # dot with gvec # utt x frame x att_dim -> utt x frame e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2) # NOTE consider zero padding when compute w. if self.mask is None: self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len)) e.masked_fill_(self.mask, -float("inf")) # apply monotonic attention constraint (mainly for TTS) if last_attended_idx is not None: e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) w = F.softmax(scaling * e, dim=1) # forward attention att_prev_shift = F.pad(att_prev, (1, 0))[:, :-1] w = (self.trans_agent_prob * att_prev + (1 - self.trans_agent_prob) * att_prev_shift) * w # NOTE: clamp is needed to avoid nan gradient w = F.normalize(torch.clamp(w, 1e-6), p=1, dim=1) # weighted sum over flames # utt x hdim # NOTE use bmm instead of sum(*) c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1) # update transition agent prob self.trans_agent_prob = torch.sigmoid(self.mlp_ta(torch.cat([c, out_prev, dec_z], dim=1))) return c, w