# Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) # Adapted by Florian Lux 2021 from abc import ABC import torch from ..Utility.utils import pad_list class LengthRegulator(torch.nn.Module, ABC): """ Length regulator module for feed-forward Transformer. This is a module of length regulator described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, pad_value=0.0): """ Initialize length regulator module. Args: pad_value (float, optional): Value used for padding. """ super(LengthRegulator, self).__init__() self.pad_value = pad_value def forward(self, xs, ds, alpha=1.0): """ Calculate forward propagation. Args: xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D). ds (LongTensor): Batch of durations of each frame (B, T). alpha (float, optional): Alpha value to control speed of speech. Returns: Tensor: replicated input tensor based on durations (B, T*, D). """ if alpha != 1.0: assert alpha > 0 ds = torch.round(ds.float() * alpha).long() if ds.sum() == 0: ds[ds.sum(dim=1).eq(0)] = 1 return pad_list([self._repeat_one_sequence(x, d) for x, d in zip(xs, ds)], self.pad_value) def _repeat_one_sequence(self, x, d): """ Repeat each frame according to duration """ return torch.repeat_interleave(x, d, dim=0)