import soundfile as sf import torch import torch.multiprocessing import torch.multiprocessing from numpy import trim_zeros from speechbrain.pretrained import EncoderClassifier from .AudioPreprocessor import AudioPreprocessor class ProsodicConditionExtractor: def __init__(self, sr, device=torch.device("cpu")): self.ap = AudioPreprocessor(input_sr=sr, output_sr=16000, melspec_buckets=80, hop_length=256, n_fft=1024, cut_silence=False) # https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", run_opts={"device": str(device)}, savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_ecapa") # https://huggingface.co/speechbrain/spkrec-xvect-voxceleb self.speaker_embedding_func_xvector = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", run_opts={"device": str(device)}, savedir="Models/SpeakerEmbedding/speechbrain_speaker_embedding_xvector") def extract_condition_from_reference_wave(self, wave, already_normalized=False): if already_normalized: norm_wave = wave else: norm_wave = self.ap.audio_to_wave_tensor(normalize=True, audio=wave) norm_wave = torch.tensor(trim_zeros(norm_wave.numpy())) spk_emb_ecapa = self.speaker_embedding_func_ecapa.encode_batch(wavs=norm_wave.unsqueeze(0)).squeeze() spk_emb_xvector = self.speaker_embedding_func_xvector.encode_batch(wavs=norm_wave.unsqueeze(0)).squeeze() combined_utt_condition = torch.cat([spk_emb_ecapa.cpu(), spk_emb_xvector.cpu()], dim=0) return combined_utt_condition if __name__ == '__main__': wave, sr = sf.read("../audios/1.wav") ext = ProsodicConditionExtractor(sr=sr) print(ext.extract_condition_from_reference_wave(wave=wave).shape)