import os import gradio as gr import numpy as np import torch from pathlib import Path os.system("pip uninstall -y gradio") os.system("pip install gradio==3.2") from demo_inference.demo_tts import DemoTTS from demo_inference.demo_asr import DemoASR from demo_inference.demo_anonymization import DemoAnonymizer def pcm2float(sig, dtype='float32'): """ https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182 """ sig = np.asarray(sig) if sig.dtype.kind not in 'iu': raise TypeError("'sig' must be an array of integers") dtype = np.dtype(dtype) if dtype.kind != 'f': raise TypeError("'dtype' must be a floating point type") i = np.iinfo(sig.dtype) abs_max = 2 ** (i.bits - 1) offset = i.min + abs_max return (sig.astype(dtype) - offset) / abs_max def float2pcm(sig, dtype='int16'): """ https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182 """ sig = np.asarray(sig) if sig.dtype.kind != 'f': raise TypeError("'sig' must be a float array") dtype = np.dtype(dtype) if dtype.kind not in 'iu': raise TypeError("'dtype' must be an integer type") i = np.iinfo(dtype) abs_max = 2 ** (i.bits - 1) offset = i.min + abs_max return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) class VPInterface: def __init__(self): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.path_to_tts_models = Path('models', 'tts') self.path_to_asr_model = Path('models', 'asr') self.path_to_anon_model = Path('models', 'anonymization') self.synthesis_model = DemoTTS(model_paths=self.path_to_tts_models, device=self.device) self.asr_model = DemoASR(model_path=self.path_to_asr_model, device=self.device) self.anon_model = DemoAnonymizer(model_path=self.path_to_anon_model, model_tag='gan', device=self.device) def read(self, recording, anon_model_tag): sr, audio = recording audio = pcm2float(audio) self._check_models(anon_model_tag) text_is_phonemes = True text = self.asr_model.recognize_speech(audio, sr) speaker_embedding = self.anon_model.anonymize_embedding(audio, sr) syn_audio = self.synthesis_model.read_text(transcription=text, speaker_embedding=speaker_embedding, text_is_phonemes=text_is_phonemes) return 48000, float2pcm(syn_audio.cpu().numpy()) def _check_models(self, anon_model_tag): if anon_model_tag != self.anon_model.model_tag: self.anon_model = DemoAnonymizer(model_path=self.path_to_anon_model, model_tag=anon_model_tag, device=self.device) model = VPInterface() article = """ This demo allows you to anonymize your input speech by defining different anonymization models. If you want to know more about each model, please read the paper linked above. Every time you click the *submit* button, you should receive a new voice. Note that for *pool* anonymization in this demo, we are using a different scaling approach ( sklearn.preprocessing.StandardScaler instead of sklearn.preprocessing.MinMaxScaler) because we are processing only one sample at a time and would otherwise always end up with the same voice. This demo is still work in progress, so please be lenient with possible low quality and errors. Also, be aware that this Huggingface space runs on CPU which makes the demo quite slow. For more information about this system, visit our Github page: [https://github.com/DigitalPhonetics/speaker-anonymization](https://github.com/DigitalPhonetics/speaker-anonymization/tree/gan_embeddings) """ description = """ ## Test demo corresponding to the models in our paper [Anonymizing Speech with Generative Adversarial Networks to Preserve Speaker Privacy](https://arxiv.org/abs/2210.07002) """ css = """ .gr-button-primary {background-color: green !important, border-color: green} """ iface = gr.Interface(fn=model.read, inputs=[gr.inputs.Audio(source='microphone', type='numpy', label='Say a sentence in English.'), gr.inputs.Dropdown(['gan', 'pool', 'random'], type='value', default='gan', label='Anonymization') ], outputs=gr.outputs.Audio(type='numpy', label=None), layout='vertical', title='IMS Speaker Anonymization', description=description, theme='default', allow_flagging='never', article=article, allow_screenshot=False) iface.launch(enable_queue=True)