from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain_together import Together
import os
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import time
st.set_page_config(page_title="AttroneyGPT")
col1, col2, col3 = st.columns([1,8,1])
with col2:
st.image("logo.png")
st.markdown(
"""
""",
unsafe_allow_html=True,
)
def reset_conversation():
st.session_state.messages = []
st.session_state.memory.clear()
if "messages" not in st.session_state:
st.session_state.messages = []
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True)
embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"})
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True)
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4})
prompt_template = """[INST]This is a chat template and As a legal chat bot specializing in Sericultural related Queries!!.
CONTEXT: {context}
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
[INST]
"""
prompt = PromptTemplate(template=prompt_template,
input_variables=['context', 'question', 'chat_history'])
# You can also use other LLMs options from https://python.langchain.com/docs/integrations/llms. Here I have used TogetherAI API
TOGETHER_AI_API= os.environ['TOGETHER_AI']="2a7c5dcdbb1049a39117ac0865c4d04008d49db31aa85a3258603817af16dbd0"
llm = Together(
model="mistralai/Mistral-7B-Instruct-v0.2",
temperature=0.5,
max_tokens=1024,
together_api_key=f"{TOGETHER_AI_API}"
)
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
memory=st.session_state.memory,
retriever=db_retriever,
combine_docs_chain_kwargs={'prompt': prompt}
)
for message in st.session_state.messages:
role = message.get("role")
content = message.get("content")
with st.chat_message(role, avatar="user.svg" if role == "human" else "bot"):
st.write(content)
input_prompt = st.chat_input("message LAWGpt.....")
if input_prompt:
with st.chat_message("human",avatar="user.svg"):
st.write(input_prompt)
st.session_state.messages.append({"role":"human","content":input_prompt})
full_response = " "
with st.chat_message("bot"):
with st.spinner("Thinking..."):
result = qa.invoke(input=input_prompt)
message_placeholder = st.empty()
full_response = "⚠️ **_Note: This offers basic legal advice and is not a complete substitute for consulting a human attorney_** \n\n\n"
for chunk in result["answer"]:
full_response+=chunk
time.sleep(0.02)
message_placeholder.markdown(full_response+" ▌")
st.button('Reset All Chat 🗑️', on_click=reset_conversation)
st.session_state.messages.append({"role": "ai", "content": result["answer"], "avatar": "bot"})