Spaces:
Running
Running
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain_together import Together | |
import os | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import streamlit as st | |
import time | |
st.set_page_config(page_title="zhagaramGPT") | |
col1, col2, col3 = st.columns([2,6,2]) | |
with col2: | |
st.image("logo.jpeg") | |
st.markdown( | |
""" | |
<style> | |
div[data-baseweb="input"] input { | |
border-color: #000000; | |
} | |
margin-top: 0 !important; | |
div.stButton > button:first-child { | |
background-color: #808080; | |
color:white; | |
} | |
div.stButton > button:active { | |
background-color: #808080; | |
color : white; | |
} | |
div[data-testid="stStatusWidget"] div button { | |
display: none; | |
} | |
.reportview-container { | |
margin-top: -2em; | |
} | |
#MainMenu {visibility: hidden;} | |
.stDeployButton {display:none;} | |
footer {visibility: hidden;} | |
#stDecoration {display:none;} | |
button[title="View fullscreen"]{ | |
visibility: hidden;} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
def reset_conversation(): | |
st.session_state.messages = [] | |
st.session_state.memory.clear() | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True) | |
embeddings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"}) | |
db = FAISS.load_local("ipc_vector_db", embeddings, allow_dangerous_deserialization=True) | |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4}) | |
prompt_template = """<s>[INST]This is a chat template and As a legal chat ai specializing in Sericultural related Queries!!. | |
CONTEXT: {context} | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=['context', 'question', 'chat_history']) | |
# You can also use other LLMs options from https://python.langchain.com/docs/integrations/llms. Here I have used TogetherAI API | |
TOGETHER_AI_API= os.environ['TOGETHER_AI']="2a7c5dcdbb1049a39117ac0865c4d04008d49db31aa85a3258603817af16dbd0" | |
llm = Together( | |
model="mistralai/Mistral-7B-Instruct-v0.2", | |
temperature=0.5, | |
max_tokens=1024, | |
together_api_key=f"{TOGETHER_AI_API}" | |
) | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
memory=st.session_state.memory, | |
retriever=db_retriever, | |
combine_docs_chain_kwargs={'prompt': prompt} | |
) | |
for message in st.session_state.messages: | |
role = message.get("role") | |
content = message.get("content") | |
with st.chat_message(role, avatar="user.svg" if role == "human" else "ai"): | |
st.write(content) | |
input_prompt = st.chat_input("message LAWGpt.....") | |
if input_prompt: | |
with st.chat_message("human",avatar="user.svg"): | |
st.write(input_prompt) | |
st.session_state.messages.append({"role":"human","content":input_prompt}) | |
full_response = " " | |
with st.chat_message("ai"): | |
with st.spinner("Thinking..."): | |
result = qa.invoke(input=input_prompt) | |
message_placeholder = st.empty() | |
full_response = " \n" | |
for chunk in result["answer"]: | |
full_response+=chunk | |
time.sleep(0.02) | |
message_placeholder.markdown(full_response+" β") | |
st.button('Reset All Chat ποΈ', on_click=reset_conversation) | |
st.session_state.messages.append({"role": "ai", "content": result["answer"], "avatar": "ai"}) | |