from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import gradio as gr # Load fine-tuned T5 models for different tasks translation_model_en_bn = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_en_bn") translation_tokenizer_en_bn = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_en_bn") translation_model_bn_en = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_bn_en") translation_tokenizer_bn_en = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_bn_en") summarization_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") summarization_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum") paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_banglaparaphrase") paraphrase_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_banglaparaphrase") # Function to perform machine translation def translate_text(input_text): inputs = translation_tokenizer_en_bn("translate: " + input_text, return_tensors="pt") outputs = translation_model_en_bn.generate(**inputs) translated_text = translation_tokenizer_en_bn.decode(outputs[0], skip_special_tokens=True) return translated_text # Function to perform summarization def summarize_text(input_text): inputs = summarization_tokenizer("summarize: " + input_text, return_tensors="pt") outputs = summarization_model.generate(**inputs) summarized_text = summarization_tokenizer.decode(outputs[0], skip_special_tokens=True) return summarized_text # Function to perform paraphrasing def paraphrase_text(input_text): inputs = paraphrase_tokenizer("paraphrase: " + input_text, return_tensors="pt") outputs = paraphrase_model.generate(**inputs) paraphrased_text = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True) return paraphrased_text # Gradio Interface iface = gr.Interface( fn=translate_text, # Placeholder function; will be updated dynamically based on task selection inputs=gr.Textbox("textarea", label="Input Text"), outputs=gr.Textbox("auto", label="Output Text"), live=True ) # Function to update the Gradio interface based on task selection def update_interface(change): selected_task = task_selector.value if selected_task == 'Translate': iface.fn = translate_text elif selected_task == 'Summarize': iface.fn = summarize_text elif selected_task == 'Paraphrase': iface.fn = paraphrase_text # Dropdown widget to select the task task_selector = gr.Dropdown( ["Translate", "Summarize", "Paraphrase"], default="Translate", label="Select Task" ) # Attach the update function to the dropdown widget task_selector.observe(update_interface, names='value') # Launch the Gradio app iface.launch()