import pandas as pd import numpy as np import yfinance as yf import streamlit as st import plotly.graph_objects as go list_df = pd.read_csv("Data/Company List.csv") company_name = list_df["Name"].to_list() company_symbol = (list_df["Ticker"] + '.NS').to_list() company_dict = dict() for CSymbol, CName in zip(company_symbol, company_name): company_dict[CName] = CSymbol com_sel_name = st.multiselect('Select Multiple Companies', company_name, default = None) com_sel = [company_dict[i] for i in com_sel_name] num_tick = len(com_sel) if num_tick > 1: com_data = yf.download(com_sel, start="2019-03-01", end="2024-03-01")['Adj Close'] com_data.dropna(inplace = True) st.dataframe(com_data, use_container_width=True) ## Log-Return of Company Dataset log_return = np.log(1 + com_data.pct_change()) ## Generate Random Weights rand_weig = np.array(np.random.random(num_tick)) ## Rebalancing Random Weights rebal_weig = rand_weig / np.sum(rand_weig) ## Calculate the Expected Returns, Annualize it by * 247.0 exp_ret = np.sum((log_return.mean() * rebal_weig) * 247) ## Calculate the Expected Volatility, Annualize it by * 247.0 exp_vol = np.sqrt( np.dot( rebal_weig.T, np.dot( log_return.cov() * 247, rebal_weig ) ) ) ## Calculate the Sharpe Ratio. sharpe_ratio = exp_ret / exp_vol # Put the weights into a data frame to see them better. weights_df = pd.DataFrame(data={ 'company_name': com_sel_name, 'random_weights': rand_weig, 'rebalance_weights': rebal_weig }) st.write('PORTFOLIO WEIGHTS:') st.dataframe(weights_df, use_container_width=True) # Do the same with the other metrics. metrics_df = pd.DataFrame(data={ 'Expected Portfolio Returns': exp_ret, 'Expected Portfolio Volatility': exp_vol, 'Portfolio Sharpe Ratio': sharpe_ratio }, index=[0]) st.write('PORTFOLIO METRICS:') st.dataframe(metrics_df, use_container_width=True) ## Let's get started with Monte Carlo Simulations ## How many times should we run Monte Carlo num_of_port = 5000 ## Create an Array to store the weights as they are generated all_weights = np.zeros((num_of_port, num_tick)) ## Create an Array to store the returns as they are generated ret_arr = np.zeros(num_of_port) ## Create an Array to store the volatilities as they are generated vol_arr = np.zeros(num_of_port) ## Create an Array to store the Sharpe Ratios as they are generated sharpe_arr = np.zeros(num_of_port) ## Let's start the Monte Carlo Simulation for ind in range(num_of_port): ## Let's first Calculate the Weights weig = np.array(np.random.random(num_tick)) weig = weig / np.sum(weig) ## Append the Weights to Weigths array all_weights[ind, :] = weig ## Calculate and Append the Expected Log Returns to Returns Array ret_arr[ind] = np.sum((log_return.mean() * weig) * 247) ## Calculate and Append the Volatility to the Volatitlity Array vol_arr[ind] = np.sqrt( np.dot(weig.T, np.dot(log_return.cov() * 247, weig)) ) ## Calculate and Append the Sharpe Ratio to Sharpe Ratio Array sharpe_arr[ind] = ret_arr[ind] / vol_arr[ind] ## Let's create a Data Frame with Weights, Returns, Volatitlity, and the Sharpe Ratio sim_data = [ret_arr, vol_arr, sharpe_arr, all_weights] ## Create a Data Frame using above, then Transpose it sim_df = pd.DataFrame(data=sim_data).T ## Give the columns in Simulation Data Proper Names sim_df.columns = [ 'Returns', 'Volatility', 'Sharpe Ratio', 'Portfolio Weights' ] ## Make sure the Data Types are correct in the Data Frame sim_df = sim_df.infer_objects() # Print out the results. st.write('SIMULATIONS RESULT:') st.dataframe(sim_df.head(), use_container_width=True) # Return the Max Sharpe Ratio from the run. max_sharpe_ratio = sim_df.loc[sim_df['Sharpe Ratio'].idxmax()] # Return the Min Volatility from the run. min_volatility = sim_df.loc[sim_df['Volatility'].idxmin()] max_sharpe_weights_df = pd.DataFrame(data={ 'company_name': com_sel_name, 'random_weights': max_sharpe_ratio["Portfolio Weights"], }) st.write('MAX SHARPE RATIO:') st.dataframe(max_sharpe_ratio, use_container_width=True) st.dataframe(max_sharpe_weights_df, use_container_width=True) min_volatility_weights_df = pd.DataFrame(data={ 'company_name': com_sel_name, 'random_weights': min_volatility["Portfolio Weights"], }) st.write('MIN VOLATILITY:') st.dataframe(min_volatility, use_container_width=True) st.dataframe(min_volatility_weights_df, use_container_width=True) fig = go.Figure(data=go.Scatter( x=sim_df['Volatility'], y=sim_df['Returns'], mode='markers', marker=dict( color=sim_df['Sharpe Ratio'], colorscale='RdYlBu', size=10 ) )) # Add color bar fig.update_layout( coloraxis_colorbar=dict( title='Sharpe Ratio' ) ) # Add title and axis labels fig.update_layout( title='Portfolio Returns Vs. Risk', xaxis=dict(title='Standard Deviation'), yaxis=dict(title='Returns') ) # Plot the Max Sharpe Ratio, using a `Red Star`. fig.add_trace(go.Scatter( x=[max_sharpe_ratio[1]], y=[max_sharpe_ratio[0]], mode='markers', marker=dict( color='red', symbol='star', size=20 ), name='Max Sharpe Ratio' )) # Plot the Min Volatility, using a `Blue Star`. fig.add_trace(go.Scatter( x=[min_volatility[1]], y=[min_volatility[0]], mode='markers', marker=dict( color='blue', symbol='star', size=20 ), name='Min Volatility' )) st.plotly_chart(fig, use_container_width=True)