A_Dog_Or_A_Cat / app.py
shyamgupta196
eval rem for pretrained
956b27f
raw
history blame
904 Bytes
import requests
import gradio as gr
import torch
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
LABELS = {0:'Cat', 1:'Dog'}
model = torch.load('CatVsDogsModel.pth',map_location='cpu')
transform = create_transform(**resolve_data_config({},model=model))
def predict(img):
img = img.convert('RGB')
img = transform(img).unsqueeze(0)
with torch.no_grad():
out= model(img)
probability = torch.nn.functional.softmax(out[0],dim=0)
values, indices = torch.topk(probability,k=2)
return {LABELS[i]: v.item() for i,v in zip(indices,values)}
transform = create_transform(**resolve_data_config({},model=model))
# we do not need to train model , hence using model.eval() to use it only for inference
model.eval()
iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs="label").launch()
iface.launch()