import torch import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read from transformers import MBartForConditionalGeneration, MBart50TokenizerFast from faster_whisper import WhisperModel import tempfile import os MODEL_NAME = "medium" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 device = 0 if torch.cuda.is_available() else "cpu" # pipe = pipeline( # task="automatic-speech-recognition", # model=MODEL_NAME, # chunk_length_s=30, # device=device, # ) model = MBartForConditionalGeneration.from_pretrained("sanjitaa/mbart-many-to-many") tokenizer = MBart50TokenizerFast.from_pretrained("sanjitaa/mbart-many-to-many") def translate(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") #text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] ts_model = WhisperModel(MODEL_NAME, device = device, compute_type = "int8") segments, _ = ts_model.transcribe(inputs, task = "translate") lst = '' for segment in segments: lst = lst + segment.text encoded_text = tokenizer(lst, return_tensors="pt") tokenizer.src_lang = "en_XX" generated_tokens = model.generate( **encoded_text, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"] ) result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) return result demo = gr.Blocks() # mf_transcribe = gr.Interface( # fn=translate, # inputs=[ # gr.inputs.Audio(source="microphone", type="filepath", optional=True), # gr.inputs.Radio(["translate"], label="Task", default="translate"), # ], # outputs="text", # layout="horizontal", # theme="huggingface", # title="Whisper Medium: Transcribe Audio", # description=( # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" # " of arbitrary length." # ), # allow_flagging="never", # ) file_transcribe = gr.Interface( fn=translate, inputs=[ gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), gr.inputs.Radio(["translate"], label="Task", default="transcribe"), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Medium: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([file_transcribe], ["Audio file"]) demo.launch(enable_queue=True)