import gradio as gr import peft from peft import LoraConfig from transformers import AutoTokenizer,BitsAndBytesConfig, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor import torch from peft import PeftModel import torch.nn as nn clip_model_name = "openai/clip-vit-base-patch32" phi_model_name = "microsoft/phi-2" tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True) processor = AutoProcessor.from_pretrained(clip_model_name) tokenizer.pad_token = tokenizer.eos_token IMAGE_TOKEN_ID = 23893 # token for word comment device = "cuda" if torch.cuda.is_available() else "cpu" clip_embed = 768 phi_embed = 2560 class SimpleResBlock(nn.Module): def __init__(self, phi_embed): super().__init__() self.pre_norm = nn.LayerNorm(phi_embed) self.proj = nn.Sequential( nn.Linear(phi_embed, phi_embed), nn.GELU(), nn.Linear(phi_embed, phi_embed) ) def forward(self, x): x = self.pre_norm(x) return x + self.proj(x) # models clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device) projection = torch.nn.Linear(clip_embed, phi_embed).to(device) resblock = SimpleResBlock(phi_embed).to(device) phi_model = AutoModelForCausalLM.from_pretrained(phi_model_name,trust_remote_code=True).to(device) # load weights model_to_merge = PeftModel.from_pretrained(phi_model,'./model_chkpt/lora_adaptor') merged_model = model_to_merge.merge_and_unload() projection.load_state_dict(torch.load('./model_chkpt/step2_projection.pth',map_location=torch.device(device))) resblock.load_state_dict(torch.load('./model_chkpt/step2_resblock.pth',map_location=torch.device(device))) def model_generate_ans(img,val_q): max_generate_length = 30 # image image_processed = processor(images=img, return_tensors="pt").to(device) clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:] val_image_embeds = projection(clip_val_outputs) val_image_embeds = resblock(val_image_embeds).to(torch.float16) img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device) img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0) val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0) val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0) val_combined_embeds = torch.cat([val_image_embeds, img_token_embeds, val_q_embeds], dim=1) # 4, 69, 2560 predicted_caption = torch.full((1,max_generate_length),50256) for g in range(max_generate_length): phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits'] # 4, 69, 51200 predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1) # 4,1,51200 predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1) # 4,1 predicted_caption[:,g] = predicted_word_token.view(1,-1).to(device) next_token_embeds = phi_model.model.embed_tokens(predicted_word_token) # 4,1,2560 val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1) predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256) return predicted_captions_decoded with gr.Blocks() as demo: gr.Markdown( """ # Chat with MultiModal GPT ! Build using combining clip model and phi-2 model. """ ) # app GUI with gr.Row(): with gr.Column(): img_input = gr.Image(label='Image') img_question = gr.Text(label ='Question') with gr.Column(): img_answer = gr.Text(label ='Answer') section_btn = gr.Button("Submit") section_btn.click(model_generate_ans, inputs=[img_input,img_question], outputs=[img_answer]) if __name__ == "__main__": demo.launch()