import sys import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import torchvision import numpy as np from torch_lr_finder import LRFinder from torch.optim.lr_scheduler import OneCycleLR import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image import gradio as gr from pytorch_lightning import LightningModule, Trainer, seed_everything from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.callbacks.progress import TQDMProgressBar from pytorch_lightning.loggers import CSVLogger from pytorch_lightning.loggers import TensorBoardLogger from torchmetrics import Accuracy from models import custom_resnet class LitResnet(LightningModule): def __init__(self, num_classes=10, lr=0.05): super().__init__() self.save_hyperparameters() self.model = custom_resnet.Net() self.criterion = nn.CrossEntropyLoss() self.BATCH_SIZE = 512 self.torchmetrics_accuracy = Accuracy(task="multiclass", num_classes= self.hparams.num_classes) def forward(self, x): out = self.model(x) return out def training_step(self, batch, batch_idx): x, y = batch y_pred = self(x) loss = self.criterion(y_pred, y) acc = self.torchmetrics_accuracy(y_pred, y) self.log('train_loss', loss, prog_bar=True, on_step=False, on_epoch=True) self.log('train_acc', acc, prog_bar=True, on_step=False, on_epoch=True) return loss def evaluate(self, batch, stage=None): x, y = batch y_test_pred = self(x) loss = self.criterion(y_test_pred, y) acc = self.torchmetrics_accuracy(y_test_pred, y) if stage: self.log(f"{stage}_loss", loss, prog_bar=True) self.log(f"{stage}_acc", acc, prog_bar=True) def test_step(self, batch, batch_idx): self.evaluate(batch, "test") def validation_step(self, batch, batch_idx): self.evaluate(batch, "val") def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=1e-4) scheduler = OneCycleLR( optimizer, max_lr= 5.38E-02, #self.hparams.lr, pct_start = 5/self.trainer.max_epochs, epochs=self.trainer.max_epochs, steps_per_epoch=len(train_loader), div_factor=100,verbose=False, three_phase=False ) return ([optimizer],[scheduler])