# This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # PixArt: https://github.com/PixArt-alpha/PixArt-alpha # Latte: https://github.com/Vchitect/Latte # DiT: https://github.com/facebookresearch/DiT/tree/main # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint import xformers.ops from einops import rearrange from timm.models.vision_transformer import Mlp from opensora.acceleration.communications import all_to_all, split_forward_gather_backward from opensora.acceleration.parallel_states import get_sequence_parallel_group approx_gelu = lambda: nn.GELU(approximate="tanh") def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool): if use_kernel: try: from apex.normalization import FusedLayerNorm return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps) except ImportError: raise RuntimeError("FusedLayerNorm not available. Please install apex.") else: return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine) def modulate(norm_func, x, shift, scale): # Suppose x is (B, N, D), shift is (B, D), scale is (B, D) dtype = x.dtype x = norm_func(x.to(torch.float32)).to(dtype) x = x * (scale.unsqueeze(1) + 1) + shift.unsqueeze(1) x = x.to(dtype) return x def t2i_modulate(x, shift, scale): return x * (1 + scale) + shift # =============================================== # General-purpose Layers # =============================================== class PatchEmbed3D(nn.Module): """Video to Patch Embedding. Args: patch_size (int): Patch token size. Default: (2,4,4). in_chans (int): Number of input video channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None, flatten=True, ): super().__init__() self.patch_size = patch_size self.flatten = flatten self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, D, H, W = x.size() if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if D % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) x = self.proj(x) # (B C T H W) if self.norm is not None: D, Wh, Ww = x.size(2), x.size(3), x.size(4) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC return x class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, enable_flashattn: bool = False, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.enable_flashattn = enable_flashattn self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape qkv = self.qkv(x) qkv_shape = (B, N, 3, self.num_heads, self.head_dim) if self.enable_flashattn: qkv_permute_shape = (2, 0, 1, 3, 4) else: qkv_permute_shape = (2, 0, 3, 1, 4) qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.enable_flashattn: from flash_attn import flash_attn_func x = flash_attn_func( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, softmax_scale=self.scale, ) else: dtype = q.dtype q = q * self.scale attn = q @ k.transpose(-2, -1) # translate attn to float32 attn = attn.to(torch.float32) attn = attn.softmax(dim=-1) attn = attn.to(dtype) # cast back attn to original dtype attn = self.attn_drop(attn) x = attn @ v x_output_shape = (B, N, C) if not self.enable_flashattn: x = x.transpose(1, 2) x = x.reshape(x_output_shape) x = self.proj(x) x = self.proj_drop(x) return x class SeqParallelAttention(Attention): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, enable_flashattn: bool = False, ) -> None: super().__init__( dim=dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, enable_flashattn=enable_flashattn, ) def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape # for sequence parallel here, the N is a local sequence length qkv = self.qkv(x) qkv_shape = (B, N, 3, self.num_heads, self.head_dim) qkv = qkv.view(qkv_shape) sp_group = get_sequence_parallel_group() # apply all_to_all to gather sequence and split attention heads # [B, SUB_N, 3, NUM_HEAD, HEAD_DIM] -> [B, N, 3, NUM_HEAD_PER_DEVICE, HEAD_DIM] qkv = all_to_all(qkv, sp_group, scatter_dim=3, gather_dim=1) if self.enable_flashattn: qkv_permute_shape = (2, 0, 1, 3, 4) # [3, B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM] else: qkv_permute_shape = (2, 0, 3, 1, 4) # [3, B, NUM_HEAD_PER_DEVICE, N, HEAD_DIM] qkv = qkv.permute(qkv_permute_shape) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.enable_flashattn: from flash_attn import flash_attn_func x = flash_attn_func( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, softmax_scale=self.scale, ) else: dtype = q.dtype q = q * self.scale attn = q @ k.transpose(-2, -1) # translate attn to float32 attn = attn.to(torch.float32) attn = attn.softmax(dim=-1) attn = attn.to(dtype) # cast back attn to original dtype attn = self.attn_drop(attn) x = attn @ v if not self.enable_flashattn: x = x.transpose(1, 2) # apply all to all to gather back attention heads and split sequence # [B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM] -> [B, SUB_N, NUM_HEAD, HEAD_DIM] x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) # reshape outputs back to [B, N, C] x_output_shape = (B, N, C) x = x.reshape(x_output_shape) x = self.proj(x) x = self.proj_drop(x) return x class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): super(MultiHeadCrossAttention, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.q_linear = nn.Linear(d_model, d_model) self.kv_linear = nn.Linear(d_model, d_model * 2) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, cond, mask=None): # query/value: img tokens; key: condition; mask: if padding tokens B, N, C = x.shape q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(2) attn_bias = None if mask is not None: attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, -1, C) x = self.proj(x) x = self.proj_drop(x) return x class SeqParallelMultiHeadCrossAttention(MultiHeadCrossAttention): def __init__( self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, ): super().__init__(d_model=d_model, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop) def forward(self, x, cond, mask=None): # query/value: img tokens; key: condition; mask: if padding tokens sp_group = get_sequence_parallel_group() sp_size = dist.get_world_size(sp_group) B, SUB_N, C = x.shape N = SUB_N * sp_size # shape: # q, k, v: [B, SUB_N, NUM_HEADS, HEAD_DIM] q = self.q_linear(x).view(B, -1, self.num_heads, self.head_dim) kv = self.kv_linear(cond).view(B, -1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(2) # apply all_to_all to gather sequence and split attention heads q = all_to_all(q, sp_group, scatter_dim=2, gather_dim=1) k = split_forward_gather_backward(k, get_sequence_parallel_group(), dim=2, grad_scale="down") v = split_forward_gather_backward(v, get_sequence_parallel_group(), dim=2, grad_scale="down") q = q.view(1, -1, self.num_heads // sp_size, self.head_dim) k = k.view(1, -1, self.num_heads // sp_size, self.head_dim) v = v.view(1, -1, self.num_heads // sp_size, self.head_dim) # compute attention attn_bias = None if mask is not None: attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # apply all to all to gather back attention heads and scatter sequence x = x.view(B, -1, self.num_heads // sp_size, self.head_dim) x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) # apply output projection x = x.view(B, -1, C) x = self.proj(x) x = self.proj_drop(x) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, num_patch, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final, x, shift, scale) x = self.linear(x) return x class T2IFinalLayer(nn.Module): """ The final layer of PixArt. """ def __init__(self, hidden_size, num_patch, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) self.out_channels = out_channels def forward(self, x, t): shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) x = t2i_modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x # =============================================== # Embedding Layers for Timesteps and Class Labels # =============================================== class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) freqs = freqs.to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t, dtype): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) if t_freq.dtype != dtype: t_freq = t_freq.to(dtype) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) return self.embedding_table(labels) class SizeEmbedder(TimestepEmbedder): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.outdim = hidden_size def forward(self, s, bs): if s.ndim == 1: s = s[:, None] assert s.ndim == 2 if s.shape[0] != bs: s = s.repeat(bs // s.shape[0], 1) assert s.shape[0] == bs b, dims = s.shape[0], s.shape[1] s = rearrange(s, "b d -> (b d)") s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) s_emb = self.mlp(s_freq) s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) return s_emb @property def dtype(self): return next(self.parameters()).dtype class CaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): super().__init__() self.y_proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 ) self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return caption def forward(self, caption, train, force_drop_ids=None): if train: assert caption.shape[2:] == self.y_embedding.shape use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids) caption = self.y_proj(caption) return caption # =============================================== # Sine/Cosine Positional Embedding Functions # =============================================== # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if not isinstance(grid_size, tuple): grid_size = (grid_size, grid_size) grid_h = np.arange(grid_size[0], dtype=np.float32) / scale grid_w = np.arange(grid_size[1], dtype=np.float32) / scale if base_size is not None: grid_h *= base_size / grid_size[0] grid_w *= base_size / grid_size[1] grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0): pos = np.arange(0, length)[..., None] / scale return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb