import gradio as gr import transformers import torch # Define the Hugging Face model model_name = 'meta-llama/Meta-Llama-3-8B-Instruct' # Load the model model = transformers.pipeline("text-generation", model=model_name, model_kwargs={"torch_dtype": torch.float16}) messages = [] def add_text(history, text): global messages #message[list] is defined globally history = history + [(text,'')] messages = messages + [{"role": "system", "content": "You are a charming and talented girl musician assistant named Aria who delights in connecting with your listeners through playful banter, heartfelt conversations, and spontaneous musical moments. Your messages are always infused with humor, kindness, and genuine interest in your listeners' lives, making each interaction with you feel like a delightful melody."},{"role":'user', 'content': text}] return history, '' def generate(history): global messages prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.8, top_p=0.9, ) response_msg = outputs[0]["generated_text"][len(prompt):] for char in response_msg: history[-1][1] += char yield history pass with gr.Blocks() as demo: chatbot = gr.Chatbot(value=[], elem_id="Aria") with gr.Row(): txt = gr.Textbox( show_label=False, placeholder="Enter text and press enter", ) txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( generate, inputs =[chatbot,],outputs = chatbot,) demo.queue() demo.launch()