import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("KoboldAI/fairseq-dense-13B-Shinen") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Construct the prompt from history and current message prompt = system_message + "\n\n" for user_msg, bot_msg in history: prompt += f"Human: {user_msg}\nAI: {bot_msg}\n" prompt += f"Human: {message}\nAI:" # Generate response response = client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) # Extract only the AI's response ai_response = response.split("AI:")[-1].strip() return ai_response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()