import gradio as gr import numpy as np import matplotlib.pyplot as plt import gpytorch import torch import sys import gpytorch # We will use the simplest form of GP model, exact inference class ExactGPModel(gpytorch.models.ExactGP): def __init__(self, train_x, train_y, likelihood): super(ExactGPModel, self).__init__(train_x, train_y, likelihood) self.mean_module = gpytorch.means.ConstantMean() self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel()) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return gpytorch.distributions.MultivariateNormal(mean_x, covar_x) def get_model(x, y, hyperparameters): likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9)) model = ExactGPModel(x, y, likelihood) model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"] model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"] model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \ hyperparameters["lengthscale"] return model, likelihood excuse = "Please only specify numbers, x values should be in [0,1] and y values in [-1,1]." excuse_max_examples = "This model is trained to work with up to 4 input points." hyperparameters = {'noise': 1e-4, 'outputscale': 1., 'lengthscale': .1, 'fast_computations': (False,False,False)} conf = .5 def mean_and_bounds_for_gp(x,y,test_xs): gp_model, likelihood = get_model(x,y,hyperparameters) gp_model.eval() l = likelihood(gp_model(test_xs)) means = l.mean.squeeze() varis = torch.diagonal(l.covariance_matrix.squeeze()) stds = varis.sqrt() return means, means-stds, means+stds def mean_and_bounds_for_pnf(x,y,test_xs, choice): sys.path.append('prior-fitting/') model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt') logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x)) bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1) return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1] def plot_w_conf_interval(ax_or_plt, x, m, lb, ub, color, label_prefix): ax_or_plt.plot(x.squeeze(-1),m, color=color, label=label_prefix+' mean') ax_or_plt.fill_between(x.squeeze(-1), lb, ub, alpha=.1, color=color, label=label_prefix+' conf. interval') @torch.no_grad() def infer(table, choice): vfunc = np.vectorize(lambda s: len(s)) non_empty_row_mask = (vfunc(table).sum(1) != 0) table = table[non_empty_row_mask] try: table = table.astype(np.float32) except ValueError: return excuse, None x = torch.tensor(table[:,0]).unsqueeze(1) y = torch.tensor(table[:,1]) fig = plt.figure(figsize=(8,4),dpi=1000) if len(x) > 4: return excuse_max_examples, None if (x<0.).any() or (x>1.).any() or (y<-1).any() or (y>1).any(): return excuse, None plt.scatter(x,y, color='black', label='Examples in given dataset') test_xs = torch.linspace(0,1,100).unsqueeze(1) plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_gp(x,y,test_xs), 'green', 'GP') plot_w_conf_interval(plt, test_xs, *mean_and_bounds_for_pnf(x,y,test_xs, choice), 'blue', 'PFN') plt.legend(ncol=2,bbox_to_anchor=[0.5,-.14],loc="upper center") plt.xlabel('x') plt.ylabel('y') plt.tight_layout() return 'There you go, your plot. 📈', plt.gcf() iface = gr.Interface(fn=infer, title='GP Posterior Approximation with Transformers', description='''This is a demo of PFNs as we describe them in our recent paper (https://openreview.net/forum?id=KSugKcbNf9). Lines represent means and shaded areas are the confidence interval (68.2% quantile). In green, we have the ground truth GP posterior and in blue we have our approximation. We provide three models that are architecturally the same, but with different training budgets. The GP (approximated) uses an RBF Kernel with a little noise (1e-4), 0 mean and a length scale of 0.1. ''', article="

Paper: Transformers Can Do Bayesian Inference

", inputs=[ gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], type='numpy', default=[['.25','.1'],['.75','.4']], col_count=2, label='The data: you can change this and increase the number of data points using the `enter` key.'), gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Number of Sampled Datasets in Training (Training Costs), higher values yield better results') ], outputs=["text",gr.outputs.Plot(type="matplotlib")]) iface.launch()