import gradio as gr import pandas as pd import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer # summary function - test for single gradio function interface # summary function - test for single gradio function interfrace def bulk_function(filename): # Create class for data preparation class SimpleDataset: def __init__(self, tokenized_texts): self.tokenized_texts = tokenized_texts def __len__(self): return len(self.tokenized_texts["input_ids"]) def __getitem__(self, idx): return {k: v[idx] for k, v in self.tokenized_texts.items()} # load tokenizer and model, create trainer model_name = "j-hartmann/emotion-english-distilroberta-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) trainer = Trainer(model=model) print(filename, type(filename)) print(filename.name) # read file lines with open(filename.name, "r") as f: lines = f.readlines() # expects unnamed:0 or index, col name -> strip both lines_s = [item.split("\n")[0].split(",")[-1] for item in lines] print(lines_s) print(filename) # Tokenize texts and create prediction data set tokenized_texts = tokenizer(lines_s,truncation=True,padding=True) pred_dataset = SimpleDataset(tokenized_texts) # Run predictions -> predict whole df predictions = trainer.predict(pred_dataset) # Transform predictions to labels preds = predictions.predictions.argmax(-1) labels = pd.Series(preds).map(model.config.id2label) scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1) # scores raw temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)) # work in progress # container anger = [] disgust = [] fear = [] joy = [] neutral = [] sadness = [] surprise = [] # extract scores (as many entries as exist in pred_texts) for i in range(len(lines_s)): anger.append(temp[i][0]) disgust.append(temp[i][1]) fear.append(temp[i][2]) joy.append(temp[i][3]) neutral.append(temp[i][4]) sadness.append(temp[i][5]) surprise.append(temp[i][6]) # define df df = pd.DataFrame(list(zip(lines_s,preds,labels,scores, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=['text','pred','label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise']) # save results to csv YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file df.to_csv(YOUR_FILENAME) # return dataframe for space output return df