import gradio as gr from matplotlib.pyplot import title import numpy as np import tensorflow as tf import random from tensorflow import keras import json import requests def get_rest_url(model_name, host='127.0.0.1', port='8501', verb='predict'): url = 'https://{0}:{1}/v1/models/{2}:predict'.format(host, port, model_name) return url def rest_request(data, url): payload = json.dumps({'instances': data.tolist()}) print('im here') print(url) response = requests.post(url=url, data=payload) print('wooo') return response damage_types = np.array(sorted(['disaster happened', 'no disaster happened'])) disaster_types = np.array(sorted(['volcano', 'flooding', 'earthquake', 'fire', 'wind', 'tsunami'])) damage_levels = np.array(['no damage', 'minor damage', 'major damage', 'destroyed']) def damage_classification(img): # prediction = np.random.rand(1, 2)[0] # return {damage_types[i]: prediction[i] for i in range(len(damage_types))} image = np.zeros((1, 1024, 1024, 3), dtype=np.uint8) image[0] = img results = json.loads(rest_request(image, get_rest_url(model_name='binary-damage-classification-model', host='54.89.217.229')).content) prediction = results['predictions'][0] return {damage_types[i]: prediction[i] for i in range(len(damage_types))} def disaster_classification(img): image = np.zeros((1, 1024, 1024, 3), dtype=np.uint8) image[0] = img # prediction = model.predict(image).tolist()[0] # prediction = np.random.rand(1, 6)[0] print('hello') results = json.loads(rest_request(image, get_rest_url(model_name='disaster-classification-model', host='3.86.228.238')).content) prediction = results['predictions'][0] print('hello back') return {disaster_types[i]: prediction[i] for i in range(len(disaster_types))} def regional_damage_classification(img): image = np.zeros((1, 1024, 1024, 3), dtype=np.uint8) image[0] = img results = json.loads(rest_request(image, get_rest_url(model_name='regional-damage-classification-model', host='54.145.173.193')).content) prediction = results['predictions'][0] return {damage_levels[i]: prediction[i] for i in range(len(damage_levels))} iface = gr.Interface( fn = [disaster_classification], inputs = gr.inputs.Image(shape=(1024, 1024), image_mode='RGB', invert_colors=False, source="upload", type='numpy'), outputs = gr.outputs.Label(), allow_screenshot=True, allow_flagging='never', examples=[ './sample_images/hurricane.png', './sample_images/volcano.png', './sample_images/wildfire.png', './sample_images/earthquake.png', './sample_images/tsunami.png', ], title="Soteria - AI for Natural Disaster Response", description=""" Check out our project @ https://github.com/Soteria-ai/Soteria for more explantation! Demo below takes ~15 seconds to get the results. """, theme="grass", ) iface.launch(share=False, show_error=True, inline=True, debug=True)