import gradio as gr from fastai.vision.all import * from fastai.vision.widgets import * from fastai.callback.preds import load_learner import skimage learner = load_learner('model.pkl') labels = learner.dls.vocab def classify_image(img): pred, idx, probs = learner.predict(img) return dict(zip(learner.dls.vocab, map(float, probs))) title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article="
" examples = ['siamese.jpg', 'dog.jpg'] interpretation='default' enable_queue=True image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label(num_top_classes=3) out_pl = widgets.Output() intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()