import streamlit as st #from langchain_openai import OpenAI #from langchain.llms import HuggingFaceEndpoint from langchain_community.llms import HuggingFaceEndpoint #When deployed on huggingface spaces, this values has to be passed using Variables & Secrets setting, as shown in the video :) #import os #os.environ["OPENAI_API_KEY"] = "sk-PLfFwPq6y24234234234FJ1Uc234234L8hVowXdt" #Function to return the response def load_answer(question): # "text-davinci-003" model is depreciated, so using the latest one https://platform.openai.com/docs/deprecations #llm = OpenAI(model_name="gpt-3.5-turbo-instruct",temperature=0) llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.9) #Last week langchain has recommended to use invoke function for the below please :) answer=llm.invoke(question) return answer #App UI starts here st.set_page_config(page_title="Sentiment Analysis", page_icon=":robot:") st.header("Sentiment Analysis") #Gets the user input def get_text(): input_text = st.text_input("You:", "Pls Write Your Something.......") if input_text.isalpha(): st.write(text, 'string', ) else: st.write('Please type in a string Only') return input_text user_input=get_text() response = load_answer(user_input) submit = st.button('Generate') #If generate button is clicked if submit: st.subheader("Answer:") st.write(response)