import streamlit as st from pages import set_app_title_and_logo, qb_gpt_page, contacts_and_disclaimers import json import pandas as pd import numpy as np import os from tools import tokenizer from assets.models import QBGPT moves_to_pred = 11170 input_size = 11172 starts_size = 1954 scrimmage_size = 100 positions_id = 29 temp_ids = 52 off_def_size = 2 token_type_size = 3 play_type_size = 9 qbgpt = QBGPT(input_vocab_size = input_size, positional_vocab_size = temp_ids, position_vocab_size=positions_id, start_vocab_size=starts_size, scrimmage_vocab_size=scrimmage_size, offdef_vocab_size = off_def_size, type_vocab_size = token_type_size, playtype_vocab_size = play_type_size, embedding_dim = 256, hidden_dim = 256, num_heads = 3, diag_masks = False, to_pred_size = moves_to_pred) qbgpt.load_weights("app/assets/model_mediumv2/QBGPT") qb_tok = tokenizer(moves_index="./app/assets/moves_index.parquet", play_index="./app/assets/plays_index.parquet", positions_index="./app/assets/positions_index.parquet", scrimmage_index="./app/assets/scrimmage_index.parquet", starts_index="./app/assets/starts_index.parquet", time_index="./app/assets/time_index.parquet", window_size=20) print(os.listdir("app")) with open('./app/assets/ref.json', 'r') as fp: ref_json = json.load(fp) def convert_numpy(d): return {k:np.array(v) for k,v in d.items()} ref_json = {int(k):convert_numpy(v) for k,v in ref_json.items()} ref_df = pd.read_json("./app/assets/ref_df.json") # Define the main function to run the app def main(): set_app_title_and_logo() # Create a sidebar for navigation st.sidebar.title("Navigation") page = st.sidebar.radio("Go to:", ("QB-GPT", "Contacts and Disclaimers")) if page == "QB-GPT": # Page 2: QB-GPT st.title("QB-GPT") qb_gpt_page(ref_df, ref_json, qb_tok, qbgpt) if page == "Contacts and Disclaimers": contacts_and_disclaimers() if __name__ == "__main__": main()