import torch import torch.nn as nn class ReConsLoss(nn.Module): def __init__(self, recons_loss, nb_joints): super(ReConsLoss, self).__init__() if recons_loss == 'l1': self.Loss = torch.nn.L1Loss() elif recons_loss == 'l2' : self.Loss = torch.nn.MSELoss() elif recons_loss == 'l1_smooth' : self.Loss = torch.nn.SmoothL1Loss() # 4 global motion associated to root # 12 local motion (3 local xyz, 3 vel xyz, 6 rot6d) # 3 global vel xyz # 4 foot contact self.nb_joints = nb_joints self.motion_dim = (nb_joints - 1) * 12 + 4 + 3 + 4 def forward(self, motion_pred, motion_gt) : loss = self.Loss(motion_pred[..., : self.motion_dim], motion_gt[..., :self.motion_dim]) return loss def forward_joint(self, motion_pred, motion_gt) : loss = self.Loss(motion_pred[..., 4 : (self.nb_joints - 1) * 3 + 4], motion_gt[..., 4 : (self.nb_joints - 1) * 3 + 4]) return loss