import torch.nn as nn from models.resnet import Resnet1D class PrintModule(nn.Module): def __init__(self, me=''): super().__init__() self.me = me def forward(self, x): print(self.me, x.shape) return x class Encoder(nn.Module): def __init__(self, input_emb_width = 3, output_emb_width = 512, down_t = 3, stride_t = 2, width = 512, depth = 3, dilation_growth_rate = 3, activation='relu', norm=None): super().__init__() blocks = [] filter_t, pad_t = stride_t * 2, stride_t // 2 blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1)) blocks.append(nn.ReLU()) for i in range(down_t): input_dim = width block = nn.Sequential( nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t), Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm), ) blocks.append(block) blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1)) self.model = nn.Sequential(*blocks) def forward(self, x): return self.model(x) class Decoder(nn.Module): def __init__(self, input_emb_width = 3, output_emb_width = 512, down_t = 3, stride_t = 2, width = 512, depth = 3, dilation_growth_rate = 3, activation='relu', norm=None): super().__init__() blocks = [] filter_t, pad_t = stride_t * 2, stride_t // 2 blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1)) blocks.append(nn.ReLU()) for i in range(down_t): out_dim = width block = nn.Sequential( Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm), nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv1d(width, out_dim, 3, 1, 1) ) blocks.append(block) blocks.append(nn.Conv1d(width, width, 3, 1, 1)) blocks.append(nn.ReLU()) blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1)) self.model = nn.Sequential(*blocks) def forward(self, x): return self.model(x)