from threading import Thread
from typing import Dict
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextIteratorStreamer
TITLE = "
Chat with PaliGemma-3B-Chat-v0.2
"
DESCRIPTION = ""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model_id = "sam2ai/odia-paligemma-2b-5000-v1.0"
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
@spaces.GPU
def stream_chat(message: Dict[str, str], history: list):
# Turn 1:
# {'text': 'what is this', 'files': ['image-xxx.jpg']}
# []
# Turn 2:
# {'text': 'continue?', 'files': []}
# [[('image-xxx.jpg',), None], ['what is this', 'a image.']]
files = message.get('files', [])
image_path = None
print(files)
if files:
image_path = files[0]['path']
print(image_path)
# image_path = None
# if len(message.files) != 0:
# image_path = message.files[0].path
if len(history) != 0 and isinstance(history[0][0], tuple):
image_path = history[0][0][0]
history = history[1:]
if image_path is not None:
image = Image.open(image_path).convert("RGB")
else:
image = Image.new("RGB", (100, 100), (255, 255, 255))
pixel_values = processor(images=[image], return_tensors="pt").to(model.device)["pixel_values"]
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message.text})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
image_token_id = tokenizer.convert_tokens_to_ids("")
image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id)
input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
pixel_values=pixel_values,
streamer=streamer,
max_new_tokens=256,
do_sample=True,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for new_token in streamer:
output += new_token
yield output
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
chatbot=chatbot,
fill_height=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()