from threading import Thread from typing import Dict import gradio as gr import spaces import torch from PIL import Image from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextIteratorStreamer TITLE = "

Chat with PaliGemma-3B-Chat-v0.2

" DESCRIPTION = "

Visit our model page for details.

" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } """ model_id = "sam2ai/odia-paligemma-2b-5000-v1.0" tokenizer = AutoTokenizer.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto") @spaces.GPU def stream_chat(message: Dict[str, str], history: list): # Turn 1: # {'text': 'what is this', 'files': ['image-xxx.jpg']} # [] # Turn 2: # {'text': 'continue?', 'files': []} # [[('image-xxx.jpg',), None], ['what is this', 'a image.']] files = message.get('files', []) image_path = None print(files) if files: image_path = files[0]['path'] print(image_path) # image_path = None # if len(message.files) != 0: # image_path = message.files[0].path if len(history) != 0 and isinstance(history[0][0], tuple): image_path = history[0][0][0] history = history[1:] if image_path is not None: image = Image.open(image_path).convert("RGB") else: image = Image.new("RGB", (100, 100), (255, 255, 255)) pixel_values = processor(images=[image], return_tensors="pt").to(model.device)["pixel_values"] conversation = [] for prompt, answer in history: conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) conversation.append({"role": "user", "content": message.text}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") image_token_id = tokenizer.convert_tokens_to_ids("") image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id) input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, pixel_values=pixel_values, streamer=streamer, max_new_tokens=256, do_sample=True, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() output = "" for new_token in streamer: output += new_token yield output chatbot = gr.Chatbot(height=450) with gr.Blocks(css=CSS) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, multimodal=True, chatbot=chatbot, fill_height=True, cache_examples=False, ) if __name__ == "__main__": demo.launch()