import gradio as gr import os import subprocess from gtts import gTTS from pydub import AudioSegment from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline from PIL import Image def get_thumbnail(image_path, width): image = Image.open(image_path) image.thumbnail((width, width)) return image generator = pipeline('text-generation', model="checkpoints") tokenizer = GPT2Tokenizer.from_pretrained('checkpoints') os.environ["TOKENIZERS_PARALLELISM"] = "true" def generate_output(name, date_of_birth, image): prompt = f"Tu carta astral de hoy {name} es:" input_tokens = tokenizer.encode(prompt, add_special_tokens=False) input_text = tokenizer.decode(input_tokens) gpt2_output = generator(input_text, max_length=120, do_sample=True, temperature=0.9) generated_text = gpt2_output[0]['generated_text'] generated_text = generated_text.replace(input_text, "").strip() if len(gpt2_output) == 0 or 'generated_text' not in gpt2_output[0]: return None, "No se pudo generar el texto." try: tts = gTTS(generated_text, lang='es') temp_audio_path = "temp_audio.mp3" tts.save(temp_audio_path) audio_path = "audio.wav" audio = AudioSegment.from_mp3(temp_audio_path) audio.export(audio_path, format="wav") print("Archivo de audio generado:", audio_path) except Exception as e: return None, f"No se pudo generar el audio: {str(e)}" command = f"python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {image} --audio audio.wav --outfile video.mp4 --nosmooth" process = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if process.returncode != 0: error_message = process.stderr.decode("utf-8") return None, f"No se pudo generar el video: {error_message}" output_video_path = "video.mp4" os.remove(temp_audio_path) if os.path.isfile(output_video_path): return output_video_path, None return None, "No se pudo generar el video" def error_message_fn(error_message): if error_message is not None: return gr.outputs.Textbox(text=error_message, placeholder="Error") else: return None def get_image_choices(): image_paths = ["1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg", "6.jpg"] image_choices = [] for image_path in image_paths: image = Image.open(image_path) image.thumbnail((50, 50)) image_choices.append(image) return image_choices def select_image(image): return image iface = gr.Interface( fn=select_image, inputs=[ gr.inputs.Image(label="Selecciona una imagen:", type="pil", choices=get_image_choices(), preview="label"), gr.inputs.Textbox(lines=1, label="Nombre", placeholder="Ingresa tu nombre"), gr.inputs.Textbox(lines=1, label="Fecha de Nacimiento", placeholder="DD/MM/AAAA") ], outputs=[ gr.outputs.Video(label="Respuesta de Andrea (un minuto aproximadamente)").style(width=256), gr.outputs.Textbox(label="Mensaje de error", type="text") ], title="OrĂ¡culo de Inteligencia Artificial v2.1", layout="vertical", description="Por favor, ingresa tu nombre y fecha de nacimiento." ) iface.launch()