import os import random import asyncio import numpy as np from pathlib import Path from PIL import Image from insightface.app import FaceAnalysis import streamlit as st from huggingface_hub import InferenceClient, AsyncInferenceClient from gradio_client import Client, handle_file import yaml import insightface MAX_SEED = np.iinfo(np.int32).max DATA_PATH = Path("./data") DATA_PATH.mkdir(exist_ok=True) HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER") client, llm_client = AsyncInferenceClient(), InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") try: credentials = yaml.safe_load(open("config.yaml")) except Exception as e: st.error(f"Error al cargar config: {e}") credentials = {"username": "", "password": ""} def prepare_face_app(): app = FaceAnalysis(name='buffalo_l') app.prepare(ctx_id=0, det_size=(640, 640)) return app, insightface.model_zoo.get_model('onix.onnx') app, swapper = prepare_face_app() async def generate_image(prompt, model, w, h, scale, steps, seed): seed = random.randint(0, MAX_SEED) if seed == -1 else seed image = await client.text_to_image(prompt=prompt, height=h, width=w, guidance_scale=scale, num_inference_steps=steps, model=model) return image, seed if not isinstance(image, str) else (None, None) def get_upscale_finegrain(prompt, img_path, upscale_factor): try: result = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER).predict(input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor) return result[1] if isinstance(result, list) and len(result) > 1 else None except Exception: return None async def gen(prompt, basemodel, w, h, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language): combined_prompt = f"{prompt} {await improve_prompt(prompt, language)}" if process_enhancer else prompt image, seed = await generate_image(combined_prompt, basemodel, w, h, scales, steps, seed) if image is None: return ["Error al generar imagen", None, combined_prompt] image_path = save_image(image, seed) prompt_file_path = save_prompt(combined_prompt, seed) if process_upscale: upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor) if upscale_image_path: Image.open(upscale_image_path).save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG") image_path.unlink() # Borra la imagen original return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)] return [str(image_path), str(prompt_file_path)] async def improve_prompt(prompt, language): instruction = "With this idea, describe in English a detailed txt2img prompt in 500 characters at most..." if language == "en" else "Con esta idea, describe en español un prompt detallado de txt2img..." response = await llm_client.text_generation(f"{prompt}: {instruction}", max_new_tokens=500) return response.get('generated_text', '').strip()[:500] def save_image(image, seed): if image.mode == 'RGBA': image = image.convert('RGB') image_path = DATA_PATH / f"image_{seed}.jpg" image.save(image_path, format="JPEG") return image_path def save_prompt(prompt_text, seed): prompt_file_path = DATA_PATH / f"prompt_{seed}.txt" open(prompt_file_path, "w").write(prompt_text) return prompt_file_path def get_storage(): files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()] total_size = sum([file.stat().st_size for file in files]) / (1024.0 ** 3) return files, f"Uso total: {total_size:.3f} GB" def delete_image(image_path): try: Path(image_path).unlink() st.success(f"Imagen {image_path} borrada.") except Exception as e: st.error(f"Error al borrar imagen: {e}") def delete_all_images(): for file in DATA_PATH.glob("*.jpg"): file.unlink() st.success("Todas las imágenes han sido borradas.") def authenticate_user(username, password, credentials): return username == credentials["username"] and password == credentials["password"] def login_form(credentials): if 'authenticated' not in st.session_state: st.session_state['authenticated'] = False if not st.session_state['authenticated']: username = st.text_input("Usuario") password = st.text_input("Contraseña", type='password') if st.button("Iniciar Sesión"): if authenticate_user(username, password, credentials): st.session_state['authenticated'] = True st.success("Inicio de sesión exitoso.") else: st.error("Credenciales incorrectas.") def upload_image(): uploaded_file = st.sidebar.file_uploader("Sube una imagen", type=["png", "jpg", "jpeg"]) if uploaded_file: image_path = DATA_PATH / uploaded_file.name with open(image_path, "wb") as f: f.write(uploaded_file.getbuffer()) st.sidebar.success(f"Imagen {uploaded_file.name} cargada correctamente.") return image_path, save_prompt("#uploadedbyuser", image_path.stem) return None def gallery(): files, usage = get_storage() st.sidebar.write(f"{usage}") if st.sidebar.button("Borrar Todas las Imágenes"): delete_all_images() cols = st.columns(6) for idx, file in enumerate(files): with cols[idx % 6]: st.image(str(file)) try: prompt_file_path = DATA_PATH / f"prompt_{file.stem.split('_')[-1]}.txt" st.write(f"Prompt: {open(prompt_file_path).read()}") except FileNotFoundError: st.write("Prompt no encontrado.") st.button(f"Borrar Imagen {file.name}", on_click=delete_image, args=(file,)) if st.button(f"Swap Face en {file.name}"): upload_source_and_swap(file) def upload_source_and_swap(image_path): source_image = st.file_uploader("Sube la imagen source para face swap", type=["png", "jpg", "jpeg"]) if source_image: source_image_path = DATA_PATH / source_image.name with open(source_image_path, "wb") as f: f.write(source_image.getbuffer()) st.success(f"Imagen source {source_image.name} cargada correctamente.") dest_face_index = st.slider("Selecciona la posición de la cara destino", 1, 4, 1) swapped_image_path = face_swap(image_path, source_image_path, dest_face_index) if swapped_image_path: st.image(str(swapped_image_path), caption="Imagen con Face Swap", use_column_width=True) def face_swap(image_path, source_image_path, dest_face_index): try: img_dest, img_src = Image.open(image_path), Image.open(source_image_path) faces = app.get(img_src) if not faces: st.error("No se encontraron caras en la imagen source.") return None swapped_img = swapper.get(img_dest, faces[0], dest_index=dest_face_index - 1) # Convertir a índice base 0 swapped_img_path = DATA_PATH / f"swapped_{Path(image_path).stem}.jpg" swapped_img.save(swapped_img_path, format="JPEG") Path(image_path).unlink() return swapped_img_path except Exception as e: st.error(f"Error en face swap: {e}") return None async def main(): st.set_page_config(layout="wide") login_form(credentials) if not st.session_state['authenticated']: st.warning("Por favor, inicia sesión para acceder a la aplicación.") return prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=900) process_enhancer, language = st.sidebar.checkbox("Mejorar Prompt", value=False), st.sidebar.selectbox("Idioma", ["en", "es"]) basemodel, format_option, process_upscale = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-DEV", "black-forest-labs/FLUX.1-schnell"]), st.sidebar.selectbox("Formato", ["9:16", "16:9"]), st.sidebar.checkbox("Procesar Escalador", value=False) upscale_factor, scales, steps, seed = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0), st.sidebar.slider("Escalado", 1, 20, 10), st.sidebar.slider("Pasos", 1, 100, 20), st.sidebar.number_input("Semilla", value=-1) destination_face_position = st.sidebar.slider("Posición de la Cara de Destino", 1, 4, 1) w, h = (720, 1280) if format_option == "9:16" else (1280, 720) upload_image() image_path, prompt_file_path = None, None if st.sidebar.button("Generar Imagen"): with st.spinner("Generando..."): image_path, prompt_file_path = await gen(prompt, basemodel, w, h, scales, steps, seed, upscale_factor, process_upscale, process_enhancer, language) if image_path: st.image(image_path, caption="Imagen Generada") st.write(f"Prompt: {open(prompt_file_path).read()}") if image_path: st.success("Imagen generada y almacenada.") gallery() if __name__ == "__main__": asyncio.run(main())