Spaces:
Running
Running
File size: 8,153 Bytes
113dc2c 0dec378 27e4a6a d4fba6d 4816388 2fc432b 4816388 6b3d1c3 d95dbe9 32fdddd 980ffaa 52a0784 6b3d1c3 27e4a6a 4816388 27e4a6a 6b3d1c3 f0f180b 6b3d1c3 f0f180b 1a52ee5 68ef0f8 f0f180b d2a5152 f0f180b c79e0ac f0f180b 481dde5 6b3d1c3 980ffaa 6b3d1c3 980ffaa 6b3d1c3 980ffaa 6b3d1c3 980ffaa 6b3d1c3 99a5876 f0f180b 8c1a558 f0f180b 8c1a558 754753e 8c1a558 6b3d1c3 4816388 8c1a558 4816388 8c1a558 9ce8f90 8c1a558 077426a 53635c2 980ffaa 6b3d1c3 980ffaa 6b3d1c3 53635c2 6b3d1c3 980ffaa 6b3d1c3 53635c2 6b3d1c3 8c1a558 6b3d1c3 8c1a558 6b3d1c3 8c1a558 6b3d1c3 8c1a558 6b3d1c3 8c1a558 6b3d1c3 99a5876 6b3d1c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import numpy as np
import random
from pathlib import Path
from PIL import Image
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from gradio_client import Client, handle_file
import asyncio
from concurrent.futures import ThreadPoolExecutor
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
client = AsyncInferenceClient()
llm_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
DATA_PATH = Path("./data")
DATA_PATH.mkdir(exist_ok=True)
def run_async(func):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
executor = ThreadPoolExecutor(max_workers=1)
result = loop.run_in_executor(executor, func)
return loop.run_until_complete(result)
async def generate_image(combined_prompt, model, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
image = await client.text_to_image(
prompt=combined_prompt, height=height, width=width, guidance_scale=scales,
num_inference_steps=steps, model=model
)
return image, seed
except Exception as e:
return f"Error al generar imagen: {e}", None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path), prompt=prompt, upscale_factor=upscale_factor
)
return result[1] if isinstance(result, list) and len(result) > 1 else None
except Exception as e:
return None
def save_prompt(prompt_text, seed):
try:
prompt_file_path = DATA_PATH / f"prompt_{seed}.txt"
with open(prompt_file_path, "w") as prompt_file:
prompt_file.write(prompt_text)
return prompt_file_path
except Exception as e:
st.error(f"Error al guardar el prompt: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer):
combined_prompt = prompt
if process_enhancer:
improved_prompt = await improve_prompt(prompt)
combined_prompt = f"{prompt} {improved_prompt}"
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
progress_bar = st.progress(0)
image, seed = await generate_image(combined_prompt, basemodel, width, height, scales, steps, seed)
progress_bar.progress(50)
if isinstance(image, str) and image.startswith("Error"):
progress_bar.empty()
return [image, None, combined_prompt]
image_path = save_image(image, seed)
prompt_file_path = save_prompt(combined_prompt, seed)
if process_upscale:
upscale_image_path = get_upscale_finegrain(combined_prompt, image_path, upscale_factor)
if upscale_image_path:
upscale_image = Image.open(upscale_image_path)
upscale_image.save(DATA_PATH / f"upscale_image_{seed}.jpg", format="JPEG")
progress_bar.progress(100)
image_path.unlink()
return [str(DATA_PATH / f"upscale_image_{seed}.jpg"), str(prompt_file_path)]
else:
progress_bar.empty()
return [str(image_path), str(prompt_file_path)]
else:
progress_bar.progress(100)
return [str(image_path), str(prompt_file_path)]
async def improve_prompt(prompt):
try:
instruction_en = "With this idea, describe in English a detailed txt2img prompt in 500 characters at most, add illumination, atmosphere, cinematic elements, and characters..."
instruction_es = "Con esta idea, describe en espa帽ol un prompt detallado de txt2img en un m谩ximo de 500 caracteres, a帽adiendo iluminaci贸n, atm贸sfera, elementos cinematogr谩ficos y personajes..."
formatted_prompt = f"{prompt}: {instruction_en} {instruction_es}"
response = llm_client.text_generation(formatted_prompt, max_new_tokens=300)
improved_text = response['generated_text'].strip() if 'generated_text' in response else response.strip()
return improved_text[:300] if len(improved_text) > 300 else improved_text
except Exception as e:
return f"Error mejorando el prompt: {e}"
def save_image(image, seed):
try:
image_path = DATA_PATH / f"image_{seed}.jpg"
image.save(image_path, format="JPEG")
return image_path
except Exception as e:
st.error(f"Error al guardar la imagen: {e}")
return None
def get_storage():
files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()]
files.sort(key=lambda x: x.stat().st_mtime, reverse=True)
usage = sum([file.stat().st_size for file in files])
return [str(file.resolve()) for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB"
def get_prompts():
prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()]
return {file.stem.replace("prompt_", ""): file for file in prompt_files}
def delete_image(image_path):
try:
if Path(image_path).exists():
Path(image_path).unlink()
st.success(f"Imagen {image_path} borrada.")
else:
st.error("El archivo de imagen no existe.")
except Exception as e:
st.error(f"Error al borrar la imagen: {e}")
def main():
st.set_page_config(layout="wide")
st.title("FLUX with prompt enhancer and upscaler")
prompt = st.sidebar.text_input("Descripci贸n de la imagen", max_chars=200)
process_enhancer = st.sidebar.checkbox("Mejorar Prompt", value=True)
basemodel = st.sidebar.selectbox("Modelo Base", ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"])
format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"])
process_upscale = st.sidebar.checkbox("Procesar Escalador", value=True)
upscale_factor = st.sidebar.selectbox("Factor de Escala", [2, 4, 8], index=0)
scales = st.sidebar.slider("Escalado", 1, 20, 10)
steps = st.sidebar.slider("Pasos", 1, 100, 20)
seed = st.sidebar.number_input("Semilla", value=-1)
if format_option == "9:16":
width = 720
height = 1280
else:
width = 1280
height = 720
if st.sidebar.button("Generar Imagen"):
with st.spinner("Mejorando y generando imagen..."):
result = asyncio.run(gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, process_enhancer))
image_paths = result[0]
prompt_file = result[1]
st.write(f"Image paths: {image_paths}")
if image_paths:
if Path(image_paths).exists():
st.image(image_paths, caption="Imagen Generada")
else:
st.error("El archivo de imagen no existe.")
if prompt_file and Path(prompt_file).exists():
prompt_text = Path(prompt_file).read_text()
st.write(f"Prompt utilizado: {prompt_text}")
else:
st.write("El archivo del prompt no est谩 disponible.")
files, usage = get_storage()
st.text(usage)
cols = st.columns(6)
prompts = get_prompts()
for idx, file in enumerate(files):
with cols[idx % 6]:
image = Image.open(file)
prompt_file = prompts.get(Path(file).stem.replace("image_", ""), None)
prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible"
st.image(image, caption=f"Imagen {idx+1}")
st.write(f"Prompt: {prompt_text}")
if st.button(f"Borrar Imagen {idx+1}", key=f"delete_{idx}"):
try:
os.remove(file)
if prompt_file:
os.remove(prompt_file)
st.success(f"Imagen {idx+1} y su prompt fueron borrados.")
except Exception as e:
st.error(f"Error al borrar la imagen o prompt: {e}")
if __name__ == "__main__":
main() |