import os import zipfile import numpy as np import random from pathlib import Path from PIL import Image import streamlit as st from huggingface_hub import AsyncInferenceClient import asyncio MAX_SEED = np.iinfo(np.int32).max client = AsyncInferenceClient() DATA_PATH = Path("./data") DATA_PATH.mkdir(exist_ok=True) PREDEFINED_SEED = random.randint(0, MAX_SEED) async def generate_image(prompt, width, height, seed, model_name): try: if seed == -1: seed = PREDEFINED_SEED seed = int(seed) image = await client.text_to_image( prompt=prompt, height=height, width=width, model=model_name ) return image, seed except Exception as e: return f"Error al generar imagen: {e}", None def save_prompt(prompt_text, seed): try: prompt_file_path = DATA_PATH / f"prompt_{seed}.txt" with open(prompt_file_path, "w") as prompt_file: prompt_file.write(prompt_text) return prompt_file_path except Exception as e: st.error(f"Error al guardar el prompt: {e}") return None async def gen(prompt, width, height, model_name): combined_prompt = prompt seed = PREDEFINED_SEED progress_bar = st.progress(0) image, seed = await generate_image(combined_prompt, width, height, seed, model_name) progress_bar.progress(100) if isinstance(image, str) and image.startswith("Error"): progress_bar.empty() return [image, None] image_path = save_image(image, seed) prompt_file_path = save_prompt(combined_prompt, seed) return [str(image_path), str(prompt_file_path)] def save_image(image, seed): try: image_path = DATA_PATH / f"image_{seed}.jpg" image.save(image_path, format="JPEG") return image_path except Exception as e: st.error(f"Error al guardar la imagen: {e}") return None def get_storage(): files = [file for file in DATA_PATH.glob("*.jpg") if file.is_file()] files.sort(key=lambda x: x.stat().st_mtime, reverse=True) usage = sum([file.stat().st_size for file in files]) return [str(file.resolve()) for file in files], f"Uso total: {usage/(1024.0 ** 3):.3f}GB" def get_prompts(): prompt_files = [file for file in DATA_PATH.glob("*.txt") if file.is_file()] return {file.stem.replace("prompt_", ""): file for file in prompt_files} def delete_all_images(): try: files = [file for file in DATA_PATH.glob("*.jpg")] prompts = [file for file in DATA_PATH.glob("*.txt")] for file in files + prompts: os.remove(file) st.success("Todas las imágenes y prompts han sido borrados.") except Exception as e: st.error(f"Error al borrar archivos: {e}") def download_images_as_zip(): zip_path = DATA_PATH / "images.zip" with zipfile.ZipFile(zip_path, 'w') as zipf: for file in DATA_PATH.glob("*.jpg"): zipf.write(file, arcname=file.name) with open(zip_path, "rb") as zip_file: st.download_button(label="Descargar imágenes en .zip", data=zip_file, file_name="images.zip", mime="application/zip") def main(): st.set_page_config(layout="wide") st.title("Generador de Imágenes") st.warning("Este espacio contiene contenido que no es adecuado para todas las audiencias. Se recomienda discreción.") agree = st.checkbox("Soy mayor de 18 años y entiendo que el contenido puede no ser apropiado.") if agree: prompt = st.sidebar.text_input("Descripción de la imagen", max_chars=500) format_option = st.sidebar.selectbox("Formato", ["9:16", "16:9"]) model_option = st.sidebar.selectbox("Modelo", ["modelo_actual", "enhanceaiteam/Flux-Uncensored-V2"]) width, height = (720, 1280) if format_option == "9:16" else (1280, 720) if st.sidebar.button("Generar Imagen"): with st.spinner("Generando imagen..."): result = asyncio.run(gen(prompt, width, height, model_option)) image_paths = result[0] prompt_file = result[1] if image_paths: if Path(image_paths).exists(): st.image(image_paths, caption="Imagen Generada") else: st.error("El archivo de imagen no existe.") if prompt_file and Path(prompt_file).exists(): prompt_text = Path(prompt_file).read_text() st.write(f"Prompt utilizado: {prompt_text}") else: st.write("El archivo del prompt no está disponible.") files, usage = get_storage() st.text(usage) cols = st.columns(6) prompts = get_prompts() for idx, file in enumerate(files): with cols[idx % 6]: image = Image.open(file) prompt_file = prompts.get(Path(file).stem.replace("image_", ""), None) prompt_text = Path(prompt_file).read_text() if prompt_file else "No disponible" st.image(image, caption=f"Imagen {idx+1}") st.write(f"Prompt: {prompt_text}") if st.button(f"Borrar Imagen {idx+1}", key=f"delete_{idx}"): try: os.remove(file) if prompt_file: os.remove(prompt_file) st.success(f"Imagen {idx+1} y su prompt fueron borrados.") except Exception as e: st.error(f"Error al borrar la imagen o prompt: {e}") if st.button("Borrar todas las imágenes"): delete_all_images() download_images_as_zip() else: st.error("No puedes acceder a este espacio hasta que confirmes que eres mayor de edad.") if __name__ == "__main__": main()