import io import os import streamlit as st import tempfile from scripts import analyze_metadata, generate_metadata, ingest, MODEL_NAME st.title('# DocVerifyRAG') st.write('## Anomaly detection for BIM document metadata') def suggest_metadata(file_upload): extension = uploaded_file.name.split('.')[-1] with tempfile.NamedTemporaryFile(delete=False) as tmp: tmp.write(uploaded_file.read()) st.write(f'Created temporary file {tmp.name}') st.write('## Ingesting Unstructured file') docs = ingest(tmp.name) print(f'Ingested {tmp.name}') metadata = generate_metadata(docs) st.write('## Querying Together.ai API') st.write(f'### Suggested Metadata Generated by {MODEL_NAME}') st.write(f'#### {metadata}') with st.form('analyze_form'): st.write('Enter your file metadata in the following schema:') text = st.text_input(label='Filename, Description, Discipline', value="", placeholder=str) submitted = st.form_submit_button('Submit') if submitted: filename, description, discipline = text.split(',') st.write('## Analyzing with Vectara + together.ai') analysis = analyze_metadata(filename, description, discipline) st.write(analysis) submitted = None st.write('## Generate metadata?') uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") if uploaded_file is not None: query_api = st.button('Query API') if query_api: suggest_metadata(uploaded_file) query_api = None