import gradio as gr from huggingface_hub import InferenceClient # 使用可能なモデルのリスト models = ["Sakalti/Saba1.5-Pro", "Sakalti/Saba2-Preview", "Sakalti/Saba2.1-Preview"] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, selected_model ): # デバッグ用: 各入力値の型を出力 print(f"Message: {message} (Type: {type(message)})") print(f"History: {history} (Type: {type(history)})") print(f"System Message: {system_message} (Type: {type(system_message)})") print(f"Max Tokens: {max_tokens} (Type: {type(max_tokens)})") print(f"Temperature: {temperature} (Type: {type(temperature)})") print(f"Top-p: {top_p} (Type: {type(top_p)})") print(f"Selected Model: {selected_model} (Type: {type(selected_model)})") # 型変換: selected_modelを文字列に変換 selected_model = str(selected_model) # 選択したモデルに基づいてInferenceClientを初期化 client = InferenceClient(selected_model) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # インターフェース demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="あなたはフレンドリーなチャットボットです。", label="システムメッセージ"), gr.Slider(minimum=1, maximum=2048, value=768, step=1, label="新規トークン最大"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核 sampling)", ), gr.Dropdown(choices=models, value=models[0], label="モデル"), ], concurrency_limit=30 # 例: 同時に30つのリクエストを処理 ) if __name__ == "__main__": demo.launch(share=True)