import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" # List of models models = { "sdxl-turbo": "stabilityai/sdxl-turbo", "MistoLine": "TheMistoAI/MistoLine" } # Cache to store loaded pipelines pipelines = {} # Function to load a model def load_model(model_name): if model_name in pipelines: return pipelines[model_name] if model_name not in models: raise ValueError(f"Model {model_name} is not available.") model_path = models[model_name] if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() else: pipe = DiffusionPipeline.from_pretrained(model_path, use_safetensors=True) pipe = pipe.to(device) pipelines[model_name] = pipe return pipe MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(model_name, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): pipe = load_model(model_name) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): model_name = gr.Dropdown( label="Select Model", choices=list(models.keys()), value="sdxl-turbo", show_label=True ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [model_name, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) demo.queue().launch()