import os import shutil from huggingface_hub import snapshot_download import gradio as gr os.chdir(os.path.dirname(os.path.abspath(__file__))) from scripts.inference import inference_process import argparse import uuid is_shared_ui = True if "fudan-generative-ai/hallo" in os.environ['SPACE_ID'] else False if not is_shared_ui: hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models") def run_inference(source_image, driving_audio, pose_weight, face_weight, lip_weight, face_expand_ratio, progress=gr.Progress(track_tqdm=True)): if is_shared_ui: raise gr.Error("This Space only works in duplicated instances") unique_id = uuid.uuid4() args = argparse.Namespace( config='configs/inference/default.yaml', source_image=source_image, driving_audio=driving_audio, output=f'output-{unique_id}.mp4', pose_weight=pose_weight, face_weight=face_weight, lip_weight=lip_weight, face_expand_ratio=face_expand_ratio, checkpoint=None ) inference_process(args) return f'output-{unique_id}.mp4' with gr.Blocks(theme='freddyaboulton/dracula_revamped@0.3.8' ) as demo: gr.Markdown( """ # Talking Head Generation Upload a face image and driving audio, and adjust the weights to generate a talking head video. """ ) with gr.Row(): with gr.Column(): avatar_face = gr.Image(type="filepath", label="Face", elem_id="face-input") driving_audio = gr.Audio(type="filepath", label="Driving Audio", elem_id="audio-input") with gr.Column(): output_video = gr.Video(label="Your Talking Head", elem_id="output-video") with gr.Accordion("Advanced Settings", open=False): pose_weight = gr.Slider(minimum=0.0, value=1.5, label="Pose Weight") face_weight = gr.Slider(minimum=0.0, value=1.0, label="Face Weight") lip_weight = gr.Slider(minimum=0.0, value=1.1, label="Lip Weight") face_expand_ratio = gr.Slider(minimum=0.0, value=1.2, label="Face Expand Ratio") generate = gr.Button("Generate", elem_id="generate-button") generate.click( fn=run_inference, inputs=[avatar_face, driving_audio, pose_weight, face_weight, lip_weight, face_expand_ratio], outputs=output_video ) demo.launch()