import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import copy import math from transformers import Wav2Vec2Model,Wav2Vec2Config from transformers.modeling_outputs import BaseModelOutput from typing import Optional, Tuple _CONFIG_FOR_DOC = "Wav2Vec2Config" # the implementation of Wav2Vec2Model is borrowed from https://huggingface.co/transformers/_modules/transformers/models/wav2vec2/modeling_wav2vec2.html#Wav2Vec2Model # initialize our encoder with the pre-trained wav2vec 2.0 weights. def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.Tensor] = None, min_masks: int = 0, ) -> np.ndarray: bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] padding_mask = attention_mask.ne(1) if attention_mask is not None else None for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask lengths = np.full(num_mask, mask_length) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True return mask # linear interpolation layer def linear_interpolation(features, input_fps, output_fps, output_len=None): features = features.transpose(1, 2) seq_len = features.shape[2] / float(input_fps) if output_len is None: output_len = int(seq_len * output_fps) output_features = F.interpolate(features,size=output_len,align_corners=True,mode='linear') return output_features.transpose(1, 2) class Wav2Vec2Model(Wav2Vec2Model): def __init__(self, config): super().__init__(config) self.args = config self.args.audio_fps = 15 #args.audio_fps #input_values 16K hz, 49fps, 20ms overlap, 25ms recepion field def forward( self, input_values, dataset="beat", attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, frame_num=None ): #print(input_values.shape) self.config.output_attentions = True output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.feature_extractor(input_values) hidden_states = hidden_states.transpose(1, 2) #print(hidden_states.shape) if dataset == "beat": hidden_states = linear_interpolation(hidden_states, 49, self.args.audio_fps, output_len=frame_num) #print(hidden_states.shape) if attention_mask is not None: output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) attention_mask = torch.zeros( hidden_states.shape[:2], dtype=hidden_states.dtype, device=hidden_states.device ) attention_mask[ (torch.arange(attention_mask.shape[0], device=hidden_states.device), output_lengths - 1) ] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() hidden_states = self.feature_projection(hidden_states)[0] #print(hidden_states.shape) if self.config.apply_spec_augment and self.training: batch_size, sequence_length, hidden_size = hidden_states.size() if self.config.mask_time_prob > 0: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), self.config.mask_time_prob, self.config.mask_time_length, attention_mask=attention_mask, min_masks=2, ) hidden_states[torch.from_numpy(mask_time_indices)] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0: mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), self.config.mask_feature_prob, self.config.mask_feature_length, ) mask_feature_indices = torch.from_numpy(mask_feature_indices).to(hidden_states.device) hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] #print(encoder_outputs.shape) if not return_dict: return (hidden_states,) + encoder_outputs[1:] return hidden_states # BaseModelOutput( # last_hidden_state=hidden_states, # hidden_states=encoder_outputs.hidden_states, # attentions=encoder_outputs.attentions, # )