import torch import torch.nn as nn import os import pickle import numpy as np from torch.nn.utils import weight_norm from .utils.build_vocab import Vocab class Chomp1d(nn.Module): def __init__(self, chomp_size): super(Chomp1d, self).__init__() self.chomp_size = chomp_size def forward(self, x): return x[:, :, :-self.chomp_size].contiguous() class TemporalBlock(nn.Module): def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): super(TemporalBlock, self).__init__() self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp1 = Chomp1d(padding) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(dropout) self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, stride=stride, padding=padding, dilation=dilation)) self.chomp2 = Chomp1d(padding) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(dropout) self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, self.conv2, self.chomp2, self.relu2, self.dropout2) self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None self.relu = nn.ReLU() self.init_weights() def init_weights(self): self.conv1.weight.data.normal_(0, 0.01) self.conv2.weight.data.normal_(0, 0.01) if self.downsample is not None: self.downsample.weight.data.normal_(0, 0.01) def forward(self, x): out = self.net(x) res = x if self.downsample is None else self.downsample(x) return self.relu(out + res) class TemporalConvNet(nn.Module): def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): super(TemporalConvNet, self).__init__() layers = [] num_levels = len(num_channels) for i in range(num_levels): dilation_size = 2 ** i in_channels = num_inputs if i == 0 else num_channels[i-1] out_channels = num_channels[i] layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, padding=(kernel_size-1) * dilation_size, dropout=dropout)] self.network = nn.Sequential(*layers) def forward(self, x): return self.network(x) class TextEncoderTCN(nn.Module): """ based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """ def __init__(self, args, n_words, embed_size=300, pre_trained_embedding=None, kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False): super(TextEncoderTCN, self).__init__() if word_cache: self.embedding = None else: if pre_trained_embedding is not None: # use pre-trained embedding (fasttext) #print(pre_trained_embedding.shape) assert pre_trained_embedding.shape[0] == n_words assert pre_trained_embedding.shape[1] == embed_size self.embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding), freeze=args.freeze_wordembed) else: self.embedding = nn.Embedding(n_words, embed_size) num_channels = [args.hidden_size] * args.n_layer self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout) self.decoder = nn.Linear(num_channels[-1], args.word_f) self.drop = nn.Dropout(emb_dropout) self.emb_dropout = emb_dropout self.init_weights() def init_weights(self): self.decoder.bias.data.fill_(0) self.decoder.weight.data.normal_(0, 0.01) def forward(self, input): #print(input.shape) if self.embedding is None: emb = self.drop(input) else: emb = self.drop(self.embedding(input)) y = self.tcn(emb.transpose(1, 2)).transpose(1, 2) y = self.decoder(y) return y.contiguous(), 0 class BasicBlock(nn.Module): """ based on timm: https://github.com/rwightman/pytorch-image-models """ def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv1d( inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation, dilation=dilation, bias=True) self.bn1 = norm_layer(planes) self.act1 = act_layer(inplace=True) self.conv2 = nn.Conv1d( planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True) self.bn2 = norm_layer(planes) self.act2 = act_layer(inplace=True) if downsample is not None: self.downsample = nn.Sequential( nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True), norm_layer(planes), ) else: self.downsample=None self.stride = stride self.dilation = dilation self.drop_block = drop_block self.drop_path = drop_path def zero_init_last_bn(self): nn.init.zeros_(self.bn2.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.bn1(x) x = self.act1(x) x = self.conv2(x) x = self.bn2(x) if self.downsample is not None: shortcut = self.downsample(shortcut) x += shortcut x = self.act2(x) return x class WavEncoder(nn.Module): def __init__(self, out_dim): super().__init__() self.out_dim = out_dim self.feat_extractor = nn.Sequential( BasicBlock(1, 32, 15, 5, first_dilation=1600, downsample=True), BasicBlock(32, 32, 15, 6, first_dilation=0, downsample=True), BasicBlock(32, 32, 15, 1, first_dilation=7, ), BasicBlock(32, 64, 15, 6, first_dilation=0, downsample=True), BasicBlock(64, 64, 15, 1, first_dilation=7), BasicBlock(64, 128, 15, 6, first_dilation=0,downsample=True), ) def forward(self, wav_data): wav_data = wav_data.unsqueeze(1) out = self.feat_extractor(wav_data) return out.transpose(1, 2) class PoseGenerator(nn.Module): """ End2End model audio, text and speaker ID encoder are customized based on Yoon et al. SIGGRAPH ASIA 2020 """ def __init__(self, args): super().__init__() self.args = args self.pre_length = args.pre_frames self.gen_length = args.pose_length - args.pre_frames self.pose_dims = args.pose_dims self.facial_f = args.facial_f self.speaker_f = args.speaker_f self.audio_f = args.audio_f self.word_f = args.word_f self.emotion_f = args.emotion_f self.facial_dims = args.facial_dims self.args.speaker_dims = args.speaker_dims self.emotion_dims = args.emotion_dims self.in_size = self.audio_f + self.pose_dims + self.facial_f + self.word_f + 1 self.audio_encoder = WavEncoder(self.audio_f) self.hidden_size = args.hidden_size self.n_layer = args.n_layer if self.facial_f is not 0: self.facial_encoder = nn.Sequential( BasicBlock(self.facial_dims, self.facial_f//2, 7, 1, first_dilation=3, downsample=True), BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1, downsample=True), BasicBlock(self.facial_f//2, self.facial_f//2, 3, 1, first_dilation=1, ), BasicBlock(self.facial_f//2, self.facial_f, 3, 1, first_dilation=1, downsample=True), ) else: self.facial_encoder = None self.text_encoder = None if self.word_f is not 0: if args.word_cache: self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=None, dropout=args.dropout_prob, word_cache=True) else: with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f: self.lang_model = pickle.load(f) pre_trained_embedding = self.lang_model.word_embedding_weights self.text_encoder = TextEncoderTCN(args, args.word_index_num, args.word_dims, pre_trained_embedding=pre_trained_embedding, dropout=args.dropout_prob) self.speaker_embedding = None if self.speaker_f is not 0: self.in_size += self.speaker_f self.speaker_embedding = nn.Sequential( nn.Embedding(self.args.speaker_dims, self.speaker_f), nn.Linear(self.speaker_f, self.speaker_f), nn.LeakyReLU(True) ) self.emotion_embedding = None if self.emotion_f is not 0: self.in_size += self.emotion_f self.emotion_embedding = nn.Sequential( nn.Embedding(self.emotion_dims, self.emotion_f), nn.Linear(self.emotion_f, self.emotion_f) ) # self.emotion_embedding_tail = nn.Sequential( # nn.Conv1d(self.emotion_f, 8, 9, 1, 4), # nn.BatchNorm1d(8), # nn.LeakyReLU(0.3, inplace=True), # nn.Conv1d(8, 16, 9, 1, 4), # nn.BatchNorm1d(16), # nn.LeakyReLU(0.3, inplace=True), # nn.Conv1d(16, 16, 9, 1, 4), # nn.BatchNorm1d(16), # nn.LeakyReLU(0.3, inplace=True), # nn.Conv1d(16, self.emotion_f, 9, 1, 4), # nn.BatchNorm1d(self.emotion_f), # nn.LeakyReLU(0.3, inplace=True), # ) self.LSTM = nn.LSTM(self.in_size+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True, bidirectional=True, dropout=args.dropout_prob) self.out = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size//2), nn.LeakyReLU(True), nn.Linear(self.hidden_size//2, 330-180) ) self.LSTM_hands = nn.LSTM(self.in_size+150+3, hidden_size=self.hidden_size, num_layers=args.n_layer, batch_first=True, bidirectional=True, dropout=args.dropout_prob) self.out_hands = nn.Sequential( nn.Linear(self.hidden_size, self.hidden_size//2), nn.LeakyReLU(True), nn.Linear(self.hidden_size//2, 180+3) ) self.do_flatten_parameters = False if torch.cuda.device_count() > 1: self.do_flatten_parameters = True def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None, is_test=False): if self.do_flatten_parameters: self.LSTM.flatten_parameters() text_feat_seq = audio_feat_seq = None if in_audio is not None: audio_feat_seq = self.audio_encoder(in_audio) if in_text is not None: text_feat_seq, _ = self.text_encoder(in_text) assert(audio_feat_seq.shape[1] == text_feat_seq.shape[1]) if self.facial_f is not 0: face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1])) face_feat_seq = face_feat_seq.permute([0, 2, 1]) speaker_feat_seq = None if self.speaker_embedding: speaker_feat_seq = self.speaker_embedding(in_id) emo_feat_seq = None if self.emotion_embedding: emo_feat_seq = self.emotion_embedding(in_emo) emo_feat_seq = emo_feat_seq.permute([0,2,1]) emo_feat_seq = self.emotion_embedding_tail(emo_feat_seq) emo_feat_seq = emo_feat_seq.permute([0,2,1]) if audio_feat_seq.shape[1] != pre_seq.shape[1]: diff_length = pre_seq.shape[1] - audio_feat_seq.shape[1] audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-diff_length:, :].reshape(1,diff_length,-1)),1) if self.audio_f is not 0 and self.facial_f is 0: in_data = torch.cat((pre_seq, audio_feat_seq), dim=2) elif self.audio_f is not 0 and self.facial_f is not 0: in_data = torch.cat((pre_seq, audio_feat_seq, face_feat_seq), dim=2) else: pass if text_feat_seq is not None: in_data = torch.cat((in_data, text_feat_seq), dim=2) if emo_feat_seq is not None: in_data = torch.cat((in_data, emo_feat_seq), dim=2) if speaker_feat_seq is not None: repeated_s = speaker_feat_seq if len(repeated_s.shape) == 2: repeated_s = repeated_s.reshape(1, repeated_s.shape[1], repeated_s.shape[0]) repeated_s = repeated_s.repeat(1, in_data.shape[1], 1) in_data = torch.cat((in_data, repeated_s), dim=2) output, _ = self.LSTM(in_data) output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] output = self.out(output.reshape(-1, output.shape[2])) decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1) return decoder_outputs class CaMN(PoseGenerator): def __init__(self, args): super().__init__(args) self.audio_fusion_dim = self.audio_f+self.speaker_f+self.emotion_f+self.word_f self.facial_fusion_dim = self.audio_fusion_dim + self.facial_f self.audio_fusion = nn.Sequential( nn.Linear(self.audio_fusion_dim, self.hidden_size//2), nn.LeakyReLU(True), nn.Linear(self.hidden_size//2, self.audio_f), nn.LeakyReLU(True), ) self.facial_fusion = nn.Sequential( nn.Linear(self.facial_fusion_dim, self.hidden_size//2), nn.LeakyReLU(True), nn.Linear(self.hidden_size//2, self.facial_f), nn.LeakyReLU(True), ) def forward(self, pre_seq, in_audio=None, in_facial=None, in_text=None, in_id=None, in_emo=None): if self.do_flatten_parameters: self.LSTM.flatten_parameters() decoder_hidden = decoder_hidden_hands = None text_feat_seq = audio_feat_seq = speaker_feat_seq = emo_feat_seq = face_feat_seq = None in_data = None if self.speaker_embedding: speaker_feat_seq = self.speaker_embedding(in_id).squeeze(2) in_data = torch.cat((in_data, speaker_feat_seq), 2) if in_data is not None else speaker_feat_seq if self.emotion_embedding: emo_feat_seq = self.emotion_embedding(in_emo).squeeze(2) in_data = torch.cat((in_data, emo_feat_seq), 2) if in_text is not None: text_feat_seq, _ = self.text_encoder(in_text) in_data = torch.cat((in_data, text_feat_seq), 2) if in_data is not None else text_feat_seq if in_audio is not None: audio_feat_seq = self.audio_encoder(in_audio) if in_text is not None: if (audio_feat_seq.shape[1] != text_feat_seq.shape[1]): min_gap = text_feat_seq.shape[1] - audio_feat_seq.shape[1] audio_feat_seq = torch.cat((audio_feat_seq, audio_feat_seq[:,-min_gap:, :]),1) audio_fusion_seq = self.audio_fusion(torch.cat((audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.audio_fusion_dim)) audio_feat_seq = audio_fusion_seq.reshape(*audio_feat_seq.shape) in_data = torch.cat((in_data, audio_feat_seq), 2) if in_data is not None else audio_feat_seq if self.facial_f is not 0: face_feat_seq = self.facial_encoder(in_facial.permute([0, 2, 1])) face_feat_seq = face_feat_seq.permute([0, 2, 1]) if (audio_feat_seq.shape[1] != face_feat_seq.shape[1]): min_gap_2 = face_feat_seq.shape[1] - audio_feat_seq.shape[1] if min_gap_2 > 0: face_feat_seq = face_feat_seq[:,:audio_feat_seq.shape[1], :] else: face_feat_seq = torch.cat((face_feat_seq, face_feat_seq[:,-min_gap_2:, :]),1) face_fusion_seq = self.facial_fusion(torch.cat((face_feat_seq, audio_feat_seq, emo_feat_seq, speaker_feat_seq, text_feat_seq), dim=2).reshape(-1, self.facial_fusion_dim)) face_feat_seq = face_fusion_seq.reshape(*face_feat_seq.shape) in_data = torch.cat((in_data, face_feat_seq), 2) if in_data is not None else face_feat_seq in_data = torch.cat((pre_seq, in_data), dim=2) output, _ = self.LSTM(in_data) output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] output = self.out(output.reshape(-1, output.shape[2])) decoder_outputs = output.reshape(in_data.shape[0], in_data.shape[1], -1) in_data = torch.cat((in_data, decoder_outputs), dim=2) output_hands, _ = self.LSTM_hands(in_data) output_hands = output_hands[:, :, :self.hidden_size] + output_hands[:, :, self.hidden_size:] output_hands = self.out_hands(output_hands.reshape(-1, output_hands.shape[2])) decoder_outputs_hands = output_hands.reshape(in_data.shape[0], in_data.shape[1], -1) decoder_outputs_final = torch.zeros((in_data.shape[0], in_data.shape[1], 333)).to(in_data.device) decoder_outputs_final[:, :, 0:150] = decoder_outputs[:, :, 0:150] decoder_outputs_final[:, :, 150:333] = decoder_outputs_hands[:, :, 0:183] return { "rec_pose": decoder_outputs_final, } class ConvDiscriminator(nn.Module): def __init__(self, args): super().__init__() self.input_size = args.pose_dims self.hidden_size = 64 self.pre_conv = nn.Sequential( nn.Conv1d(self.input_size, 16, 3), nn.BatchNorm1d(16), nn.LeakyReLU(True), nn.Conv1d(16, 8, 3), nn.BatchNorm1d(8), nn.LeakyReLU(True), nn.Conv1d(8, 8, 3), ) self.LSTM = nn.LSTM(8, hidden_size=self.hidden_size, num_layers=4, bidirectional=True, dropout=0.3, batch_first=True) self.out = nn.Linear(self.hidden_size, 1) self.out2 = nn.Linear(34-6, 1) self.do_flatten_parameters = False if torch.cuda.device_count() > 1: self.do_flatten_parameters = True def forward(self, poses): if self.do_flatten_parameters: self.LSTM.flatten_parameters() poses = poses.transpose(1, 2) feat = self.pre_conv(poses) feat = feat.transpose(1, 2) output, _ = self.LSTM(feat) output = output[:, :, :self.hidden_size] + output[:, :, self.hidden_size:] batch_size = poses.shape[0] output = output.contiguous().view(-1, output.shape[2]) output = self.out(output) # apply linear to every output output = output.view(batch_size, -1) output = self.out2(output) output = torch.sigmoid(output) return output