import spaces import os # os.system("Xvfb :99 -ac &") # os.environ["DISPLAY"] = ":99" import OpenGL.GL as gl os.environ["PYOPENGL_PLATFORM"] = "egl" os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" import signal import time import csv import sys import warnings import random import gradio as gr import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP import torch.multiprocessing as mp import numpy as np import time import pprint from loguru import logger import smplx from torch.utils.tensorboard import SummaryWriter import wandb import matplotlib.pyplot as plt from utils import config, logger_tools, other_tools_hf, metric, data_transfer from dataloaders import data_tools from dataloaders.build_vocab import Vocab from optimizers.optim_factory import create_optimizer from optimizers.scheduler_factory import create_scheduler from optimizers.loss_factory import get_loss_func from dataloaders.data_tools import joints_list from utils import rotation_conversions as rc import soundfile as sf import librosa def inverse_selection_tensor(filtered_t, selection_array, n): selection_array = torch.from_numpy(selection_array).cuda() original_shape_t = torch.zeros((n, 165)).cuda() selected_indices = torch.where(selection_array == 1)[0] for i in range(n): original_shape_t[i, selected_indices] = filtered_t[i] return original_shape_t @spaces.GPU(duration=120) def test_demo_gpu( model, vq_model_face, vq_model_upper, vq_model_hands, vq_model_lower, global_motion, smplx_model, dict_data, args, joints, joint_mask_upper, joint_mask_lower, joint_mask_hands, log_softmax, ): rank = 0 other_tools_hf.load_checkpoints(vq_model_face, args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name) other_tools_hf.load_checkpoints(vq_model_upper, args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name) other_tools_hf.load_checkpoints(vq_model_hands, args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name) other_tools_hf.load_checkpoints(vq_model_lower, args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name) other_tools_hf.load_checkpoints(global_motion, args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name) other_tools_hf.load_checkpoints(model, args.test_ckpt, args.g_name) model.to(rank).eval() smplx_model.to(rank).eval() vq_model_face.to(rank).eval() vq_model_upper.to(rank).eval() vq_model_hands.to(rank).eval() vq_model_lower.to(rank).eval() global_motion.to(rank).eval() with torch.no_grad(): tar_pose_raw = dict_data["pose"] tar_pose = tar_pose_raw[:, :, :165].to(rank) tar_contact = tar_pose_raw[:, :, 165:169].to(rank) tar_trans = dict_data["trans"].to(rank) tar_exps = dict_data["facial"].to(rank) in_audio = dict_data["audio"].to(rank) in_word = None# dict_data["word"].to(rank) tar_beta = dict_data["beta"].to(rank) tar_id = dict_data["id"].to(rank).long() bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints tar_pose_jaw = tar_pose[:, :, 66:69] tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) tar_pose_hands = tar_pose[:, :, 25*3:55*3] tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) # tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, j, 3)) # tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2) tar_index_value_face_top = vq_model_face.map2index(tar_pose_face) # bs*n/4 tar_index_value_upper_top = vq_model_upper.map2index(tar_pose_upper) # bs*n/4 tar_index_value_hands_top = vq_model_hands.map2index(tar_pose_hands) # bs*n/4 tar_index_value_lower_top = vq_model_lower.map2index(tar_pose_lower) # bs*n/4 latent_face_top = vq_model_face.map2latent(tar_pose_face) # bs*n/4 latent_upper_top = vq_model_upper.map2latent(tar_pose_upper) # bs*n/4 latent_hands_top = vq_model_hands.map2latent(tar_pose_hands) # bs*n/4 latent_lower_top = vq_model_lower.map2latent(tar_pose_lower) # bs*n/4 latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2) index_in = torch.stack([tar_index_value_upper_top, tar_index_value_hands_top, tar_index_value_lower_top], dim=-1).long() tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) loaded_data = { "tar_pose_jaw": tar_pose_jaw, "tar_pose_face": tar_pose_face, "tar_pose_upper": tar_pose_upper, "tar_pose_lower": tar_pose_lower, "tar_pose_hands": tar_pose_hands, 'tar_pose_leg': tar_pose_leg, "in_audio": in_audio, "in_word": in_word, "tar_trans": tar_trans, "tar_exps": tar_exps, "tar_beta": tar_beta, "tar_pose": tar_pose, "tar4dis": tar4dis, "tar_index_value_face_top": tar_index_value_face_top, "tar_index_value_upper_top": tar_index_value_upper_top, "tar_index_value_hands_top": tar_index_value_hands_top, "tar_index_value_lower_top": tar_index_value_lower_top, "latent_face_top": latent_face_top, "latent_upper_top": latent_upper_top, "latent_hands_top": latent_hands_top, "latent_lower_top": latent_lower_top, "latent_in": latent_in, "index_in": index_in, "tar_id": tar_id, "latent_all": latent_all, "tar_pose_6d": tar_pose_6d, "tar_contact": tar_contact, } mode = 'test' bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], joints tar_pose = loaded_data["tar_pose"] tar_beta = loaded_data["tar_beta"] in_word =None# loaded_data["in_word"] tar_exps = loaded_data["tar_exps"] tar_contact = loaded_data["tar_contact"] in_audio = loaded_data["in_audio"] tar_trans = loaded_data["tar_trans"] remain = n%8 if remain != 0: tar_pose = tar_pose[:, :-remain, :] tar_beta = tar_beta[:, :-remain, :] tar_trans = tar_trans[:, :-remain, :] # in_word = in_word[:, :-remain] tar_exps = tar_exps[:, :-remain, :] tar_contact = tar_contact[:, :-remain, :] n = n - remain tar_pose_jaw = tar_pose[:, :, 66:69] tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) tar_pose_hands = tar_pose[:, :, 25*3:55*3] tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) tar_pose_upper = tar_pose[:, :, joint_mask_upper.astype(bool)] tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) tar_pose_leg = tar_pose[:, :, joint_mask_lower.astype(bool)] tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) rec_index_all_face = [] rec_index_all_upper = [] rec_index_all_lower = [] rec_index_all_hands = [] roundt = (n - args.pre_frames) // (args.pose_length - args.pre_frames) remain = (n - args.pre_frames) % (args.pose_length - args.pre_frames) round_l = args.pose_length - args.pre_frames for i in range(0, roundt): # in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+args.pre_frames] # audio fps is 16000 and pose fps is 30 in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*args.pre_frames] in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+args.pre_frames] mask_val = torch.ones(bs, args.pose_length, args.pose_dims+3+4).float().cuda() mask_val[:, :args.pre_frames, :] = 0.0 if i == 0: latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] else: latent_all_tmp = latent_all[:, i*(round_l):(i+1)*(round_l)+args.pre_frames, :] # print(latent_all_tmp.shape, latent_last.shape) latent_all_tmp[:, :args.pre_frames, :] = latent_last[:, -args.pre_frames:, :] net_out_val = model( in_audio = in_audio_tmp, in_word=None, #in_word_tmp, mask=mask_val, in_motion = latent_all_tmp, in_id = in_id_tmp, use_attentions=True,) if args.cu != 0: rec_index_upper = log_softmax(net_out_val["cls_upper"]).reshape(-1, args.vae_codebook_size) _, rec_index_upper = torch.max(rec_index_upper.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) #rec_upper = vq_model_upper.decode(rec_index_upper) else: _, rec_index_upper, _, _ = vq_model_upper.quantizer(net_out_val["rec_upper"]) #rec_upper = vq_model_upper.decoder(rec_index_upper) if args.cl != 0: rec_index_lower = log_softmax(net_out_val["cls_lower"]).reshape(-1, args.vae_codebook_size) _, rec_index_lower = torch.max(rec_index_lower.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) #rec_lower = vq_model_lower.decode(rec_index_lower) else: _, rec_index_lower, _, _ = vq_model_lower.quantizer(net_out_val["rec_lower"]) #rec_lower = vq_model_lower.decoder(rec_index_lower) if args.ch != 0: rec_index_hands = log_softmax(net_out_val["cls_hands"]).reshape(-1, args.vae_codebook_size) _, rec_index_hands = torch.max(rec_index_hands.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) #rec_hands = vq_model_hands.decode(rec_index_hands) else: _, rec_index_hands, _, _ = vq_model_hands.quantizer(net_out_val["rec_hands"]) #rec_hands = vq_model_hands.decoder(rec_index_hands) if args.cf != 0: rec_index_face = log_softmax(net_out_val["cls_face"]).reshape(-1, args.vae_codebook_size) _, rec_index_face = torch.max(rec_index_face.reshape(-1, args.pose_length, args.vae_codebook_size), dim=2) #rec_face = vq_model_face.decoder(rec_index_face) else: _, rec_index_face, _, _ = vq_model_face.quantizer(net_out_val["rec_face"]) #rec_face = vq_model_face.decoder(rec_index_face) if i == 0: rec_index_all_face.append(rec_index_face) rec_index_all_upper.append(rec_index_upper) rec_index_all_lower.append(rec_index_lower) rec_index_all_hands.append(rec_index_hands) else: rec_index_all_face.append(rec_index_face[:, args.pre_frames:]) rec_index_all_upper.append(rec_index_upper[:, args.pre_frames:]) rec_index_all_lower.append(rec_index_lower[:, args.pre_frames:]) rec_index_all_hands.append(rec_index_hands[:, args.pre_frames:]) if args.cu != 0: rec_upper_last = vq_model_upper.decode(rec_index_upper) else: rec_upper_last = vq_model_upper.decoder(rec_index_upper) if args.cl != 0: rec_lower_last = vq_model_lower.decode(rec_index_lower) else: rec_lower_last = vq_model_lower.decoder(rec_index_lower) if args.ch != 0: rec_hands_last = vq_model_hands.decode(rec_index_hands) else: rec_hands_last = vq_model_hands.decoder(rec_index_hands) # if args.cf != 0: # rec_face_last = vq_model_face.decode(rec_index_face) # else: # rec_face_last = vq_model_face.decoder(rec_index_face) rec_pose_legs = rec_lower_last[:, :, :54] bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1] rec_pose_upper = rec_upper_last.reshape(bs, n, 13, 6) rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)# rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) rec_pose_hands = rec_hands_last.reshape(bs, n, 30, 6) rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs, n, j, 3)) rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) rec_trans_v_s = rec_lower_last[:, :, 54:57] rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) rec_y_trans = rec_trans_v_s[:,:,1:2] rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) latent_last = torch.cat([rec_pose, rec_trans, rec_lower_last[:, :, 57:61]], dim=-1) rec_index_face = torch.cat(rec_index_all_face, dim=1) rec_index_upper = torch.cat(rec_index_all_upper, dim=1) rec_index_lower = torch.cat(rec_index_all_lower, dim=1) rec_index_hands = torch.cat(rec_index_all_hands, dim=1) if args.cu != 0: rec_upper = vq_model_upper.decode(rec_index_upper) else: rec_upper = vq_model_upper.decoder(rec_index_upper) if args.cl != 0: rec_lower = vq_model_lower.decode(rec_index_lower) else: rec_lower = vq_model_lower.decoder(rec_index_lower) if args.ch != 0: rec_hands = vq_model_hands.decode(rec_index_hands) else: rec_hands = vq_model_hands.decoder(rec_index_hands) if args.cf != 0: rec_face = vq_model_face.decode(rec_index_face) else: rec_face = vq_model_face.decoder(rec_index_face) rec_exps = rec_face[:, :, 6:] rec_pose_jaw = rec_face[:, :, :6] rec_pose_legs = rec_lower[:, :, :54] bs, n = rec_pose_jaw.shape[0], rec_pose_jaw.shape[1] rec_pose_upper = rec_upper.reshape(bs, n, 13, 6) rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)# rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) rec_pose_upper_recover = inverse_selection_tensor(rec_pose_upper, joint_mask_upper, bs*n) rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6) rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) rec_pose_lower_recover = inverse_selection_tensor(rec_pose_lower, joint_mask_lower, bs*n) rec_pose_hands = rec_hands.reshape(bs, n, 30, 6) rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) rec_pose_hands_recover = inverse_selection_tensor(rec_pose_hands, joint_mask_hands, bs*n) rec_pose_jaw = rec_pose_jaw.reshape(bs*n, 6) rec_pose_jaw = rc.rotation_6d_to_matrix(rec_pose_jaw) rec_pose_jaw = rc.matrix_to_axis_angle(rec_pose_jaw).reshape(bs*n, 1*3) rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover rec_pose[:, 66:69] = rec_pose_jaw to_global = rec_lower to_global[:, :, 54:57] = 0.0 to_global[:, :, :54] = rec_lower2global rec_global = global_motion(to_global) rec_trans_v_s = rec_global["rec_pose"][:, :, 54:57] rec_x_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 0:1], 1/args.pose_fps, tar_trans[:, 0, 0:1]) rec_z_trans = other_tools_hf.velocity2position(rec_trans_v_s[:, :, 2:3], 1/args.pose_fps, tar_trans[:, 0, 2:3]) rec_y_trans = rec_trans_v_s[:,:,1:2] rec_trans = torch.cat([rec_x_trans, rec_y_trans, rec_z_trans], dim=-1) tar_pose = tar_pose[:, :n, :] tar_exps = tar_exps[:, :n, :] tar_trans = tar_trans[:, :n, :] tar_beta = tar_beta[:, :n, :] rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3)) rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3)) tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) net_out = { 'rec_pose': rec_pose, 'rec_trans': rec_trans, 'tar_pose': tar_pose, 'tar_exps': tar_exps, 'tar_beta': tar_beta, 'tar_trans': tar_trans, 'rec_exps': rec_exps, } tar_pose = net_out['tar_pose'] rec_pose = net_out['rec_pose'] tar_exps = net_out['tar_exps'] tar_beta = net_out['tar_beta'] rec_trans = net_out['rec_trans'] tar_trans = net_out['tar_trans'] rec_exps = net_out['rec_exps'] # print(rec_pose.shape, tar_pose.shape) bs, n, j = tar_pose.shape[0], tar_pose.shape[1], joints # interpolate to 30fps if (30/args.pose_fps) != 1: assert 30%args.pose_fps == 0 n *= int(30/args.pose_fps) tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/args.pose_fps, mode='linear').permute(0,2,1) # print(rec_pose.shape, tar_pose.shape) rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6)) rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3) tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6)) tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3) return tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j class BaseTrainer(object): def __init__(self, args, sp, ap, tp): hf_dir = "hf" if not os.path.exists(args.out_path + "custom/" + hf_dir + "/"): os.makedirs(args.out_path + "custom/" + hf_dir + "/") sf.write(args.out_path + "custom/" + hf_dir + "/tmp.wav", ap[1], ap[0]) self.audio_path = args.out_path + "custom/" + hf_dir + "/tmp.wav" audio, ssr = librosa.load(self.audio_path) ap = (ssr, audio) self.args = args self.rank = 0 # dist.get_rank() #self.checkpoint_path = args.out_path + "custom/" + args.name + args.notes + "/" #wandb.run.dir #args.cache_path+args.out_path+"/"+args.name self.checkpoint_path = args.out_path + "custom/" + hf_dir + "/" if self.rank == 0: self.test_data = __import__(f"dataloaders.{args.dataset}", fromlist=["something"]).CustomDataset(args, "test", smplx_path=sp, audio_path=ap, text_path=tp) self.test_loader = torch.utils.data.DataLoader( self.test_data, batch_size=1, shuffle=False, num_workers=args.loader_workers, drop_last=False, ) logger.info(f"Init test dataloader success") model_module = __import__(f"models.{args.model}", fromlist=["something"]) if args.ddp: self.model = getattr(model_module, args.g_name)(args).to(self.rank) process_group = torch.distributed.new_group() self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model, process_group) self.model = DDP(self.model, device_ids=[self.rank], output_device=self.rank, broadcast_buffers=False, find_unused_parameters=False) else: self.model = torch.nn.DataParallel(getattr(model_module, args.g_name)(args), args.gpus).cpu() if self.rank == 0: logger.info(self.model) logger.info(f"init {args.g_name} success") self.smplx = smplx.create( self.args.data_path_1+"smplx_models/", model_type='smplx', gender='NEUTRAL_2020', use_face_contour=False, num_betas=300, num_expression_coeffs=100, ext='npz', use_pca=False, ) self.args = args self.joints = self.test_data.joints self.ori_joint_list = joints_list[self.args.ori_joints] self.tar_joint_list_face = joints_list["beat_smplx_face"] self.tar_joint_list_upper = joints_list["beat_smplx_upper"] self.tar_joint_list_hands = joints_list["beat_smplx_hands"] self.tar_joint_list_lower = joints_list["beat_smplx_lower"] self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3) self.joints = 55 for joint_name in self.tar_joint_list_face: self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3) for joint_name in self.tar_joint_list_upper: self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3) for joint_name in self.tar_joint_list_hands: self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3) for joint_name in self.tar_joint_list_lower: self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 self.tracker = other_tools_hf.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False,False,False]) vq_model_module = __import__(f"models.motion_representation", fromlist=["something"]) self.args.vae_layer = 2 self.args.vae_length = 256 self.args.vae_test_dim = 106 self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() # print(self.vq_model_face) # other_tools_hf.load_checkpoints(self.vq_model_face, self.args.data_path_1 + "pretrained_vq/last_790_face_v2.bin", args.e_name) self.args.vae_test_dim = 78 self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() # other_tools_hf.load_checkpoints(self.vq_model_upper, self.args.data_path_1 + "pretrained_vq/upper_vertex_1layer_710.bin", args.e_name) self.args.vae_test_dim = 180 self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() # other_tools_hf.load_checkpoints(self.vq_model_hands, self.args.data_path_1 + "pretrained_vq/hands_vertex_1layer_710.bin", args.e_name) self.args.vae_test_dim = 61 self.args.vae_layer = 4 self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).cpu() # other_tools_hf.load_checkpoints(self.vq_model_lower, self.args.data_path_1 + "pretrained_vq/lower_foot_600.bin", args.e_name) self.args.vae_test_dim = 61 self.args.vae_layer = 4 self.global_motion = getattr(vq_model_module, "VAEConvZero")(self.args).cpu() # other_tools_hf.load_checkpoints(self.global_motion, self.args.data_path_1 + "pretrained_vq/last_1700_foot.bin", args.e_name) self.args.vae_test_dim = 330 self.args.vae_layer = 4 self.args.vae_length = 240 # self.cls_loss = nn.NLLLoss().to(self.rank) # self.reclatent_loss = nn.MSELoss().to(self.rank) # self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank) # self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank) self.log_softmax = nn.LogSoftmax(dim=2) def inverse_selection(self, filtered_t, selection_array, n): original_shape_t = np.zeros((n, selection_array.size)) selected_indices = np.where(selection_array == 1)[0] for i in range(n): original_shape_t[i, selected_indices] = filtered_t[i] return original_shape_t def inverse_selection_tensor(self, filtered_t, selection_array, n): selection_array = torch.from_numpy(selection_array).cuda() original_shape_t = torch.zeros((n, 165)).cuda() selected_indices = torch.where(selection_array == 1)[0] for i in range(n): original_shape_t[i, selected_indices] = filtered_t[i] return original_shape_t def test_demo(self, epoch): ''' input audio and text, output motion do not calculate loss and metric save video ''' results_save_path = self.checkpoint_path + f"/{epoch}/" if os.path.exists(results_save_path): import shutil shutil.rmtree(results_save_path) os.makedirs(results_save_path) start_time = time.time() total_length = 0 test_seq_list = self.test_data.selected_file align = 0 latent_out = [] latent_ori = [] l2_all = 0 lvel = 0 for its, batch_data in enumerate(self.test_loader): tar_pose, rec_pose, tar_exps, tar_beta, rec_trans, tar_trans, rec_exps, bs, n, j = test_demo_gpu( self.model, self.vq_model_face, self.vq_model_upper, self.vq_model_hands, self.vq_model_lower, self.global_motion, self.smplx, batch_data, self.args, self.joints, self.joint_mask_upper, self.joint_mask_lower, self.joint_mask_hands, self.log_softmax, ) tar_pose_np = tar_pose.detach().cpu().numpy() rec_pose_np = rec_pose.detach().cpu().numpy() rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3) rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100) tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3) #''' # its = 0 gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True) np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', betas=gt_npz["betas"], poses=tar_pose_np, expressions=tar_exp_np, trans=tar_trans_np, model='smplx2020', gender='neutral', mocap_frame_rate = 30, ) np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', betas=gt_npz["betas"], poses=rec_pose_np, expressions=rec_exp_np, trans=rec_trans_np, model='smplx2020', gender='neutral', mocap_frame_rate = 30, ) total_length += n # render_vid_path = other_tools_hf.render_one_sequence_no_gt( # results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', # # results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', # results_save_path, # self.audio_path, # self.args.data_path_1+"smplx_models/", # use_matplotlib = False, # args = self.args, # ) render_vid_path = other_tools_hf.render_one_sequence_with_face( results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', results_save_path, self.audio_path, self.args.data_path_1+"smplx_models/", use_matplotlib = False, args = self.args, ) result = [ gr.Video(value=render_vid_path, visible=True), gr.File(value=results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', visible=True), ] end_time = time.time() - start_time logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") return result @logger.catch def emage(audio_path): smplx_path = None text_path = None rank = 0 world_size = 1 args = config.parse_args() #os.environ['TRANSFORMERS_CACHE'] = args.data_path_1 + "hub/" if not sys.warnoptions: warnings.simplefilter("ignore") # dist.init_process_group(backend="gloo", rank=rank, world_size=world_size) #logger_tools.set_args_and_logger(args, rank) other_tools_hf.set_random_seed(args) other_tools_hf.print_exp_info(args) # return one intance of trainer trainer = BaseTrainer(args, sp = smplx_path, ap = audio_path, tp = text_path) result = trainer.test_demo(999) return result examples = [ ["./EMAGE/test_sequences/wave16k/2_scott_0_1_1.wav"], ["./EMAGE/test_sequences/wave16k/2_scott_0_2_2.wav"], ["./EMAGE/test_sequences/wave16k/2_scott_0_3_3.wav"], ] demo = gr.Interface( emage, # function inputs=[ # gr.File(label="Please upload SMPL-X file with npz format here.", file_types=["npz", "NPZ"]), gr.Audio(), # gr.File(label="Please upload textgrid format file here.", file_types=["TextGrid", "Textgrid", "textgrid"]) ], # input type outputs=[ gr.Video(format="mp4", visible=True), gr.File(label="download motion and visualize in blender"), ], title='\
\ EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via Expressive Masked Audio Gesture Modeling
\ CVPR 2024
\
', description='\
\ Haiyang Liu1*, Zihao Zhu2*, Giorgio Becherini3, Yichen Peng4, Mingyang Su5,
\ You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo Zheng, Michael J. Black3
\ (*Equal Contribution)
\ 1The University of Tokyo, 2Keio University, 4Japan Advanced Institute of Science and Technology,
\ 3Max Planck Institute for Intelligent Systems, 5Tsinghua University
\
\ ', article="\ For appling motion on your avatar: download npz file and blender v3.3 add-on on our project page, then retarget the motion.
\ Due to the limited resources in this space, we process the first 60s of your uploaded audio,try to develop this space locally for longer motion generation, \[Project Page](https://pantomatrix.github.io/EMAGE/)\ ", examples=examples, ) if __name__ == "__main__": os.environ["MASTER_ADDR"]='127.0.0.1' os.environ["MASTER_PORT"]='8675' #os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" demo.launch(share=True)