File size: 25,945 Bytes
2d47d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
'''
Preprocessing Tranformers Based on sci-kit's API

By Omid Alemi
Created on June 12, 2017
'''
import copy
import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from .Quaternions import Quaternions
from .rotation_tools import Rotation

class MocapParameterizer(BaseEstimator, TransformerMixin):
    def __init__(self, param_type = 'euler'):
        '''
        
        param_type = {'euler', 'quat', 'expmap', 'position'}
        '''
        self.param_type = param_type

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        if self.param_type == 'euler':
            return X
        elif self.param_type == 'expmap':
            return self._to_expmap(X)
        elif self.param_type == 'quat':
            return X
        elif self.param_type == 'position':
            return self._to_pos(X)
        else:
            raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type)
#        return X
    
    def inverse_transform(self, X, copy=None): 
        if self.param_type == 'euler':
            return X
        elif self.param_type == 'expmap':
            return self._expmap_to_euler(X)
        elif self.param_type == 'quat':
            raise UnsupportedParamError('quat2euler is not supported')
        elif self.param_type == 'position':
            print('positions 2 eulers is not supported')
            return X
        else:
            raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type)

    def _to_pos(self, X):
        '''Converts joints rotations in Euler angles to joint positions'''

        Q = []
        for track in X:
            channels = []
            titles = []
            euler_df = track.values

            # Create a new DataFrame to store the exponential map rep
            pos_df = pd.DataFrame(index=euler_df.index)

            # Copy the root rotations into the new DataFrame
            # rxp = '%s_Xrotation'%track.root_name
            # ryp = '%s_Yrotation'%track.root_name
            # rzp = '%s_Zrotation'%track.root_name
            # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index)
            # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index)
            # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index)

            # List the columns that contain rotation channels
            rot_cols = [c for c in euler_df.columns if ('rotation' in c)]

            # List the columns that contain position channels
            pos_cols = [c for c in euler_df.columns if ('position' in c)]

            # List the joints that are not end sites, i.e., have channels
            joints = (joint for joint in track.skeleton)
            
            tree_data = {}

            for joint in track.traverse():
                parent = track.skeleton[joint]['parent']
                rot_order = track.skeleton[joint]['order']
                #print("rot_order:" + joint + " :" + rot_order)

                # Get the rotation columns that belong to this joint
                rc = euler_df[[c for c in rot_cols if joint in c]]

                # Get the position columns that belong to this joint
                pc = euler_df[[c for c in pos_cols if joint in c]]

                # Make sure the columns are organized in xyz order
                if rc.shape[1] < 3:
                    euler_values = np.zeros((euler_df.shape[0], 3))
                    rot_order = "XYZ"
                else:
                    euler_values = np.pi/180.0*np.transpose(np.array([track.values['%s_%srotation'%(joint, rot_order[0])], track.values['%s_%srotation'%(joint, rot_order[1])], track.values['%s_%srotation'%(joint, rot_order[2])]]))

                if pc.shape[1] < 3:
                    pos_values = np.asarray([[0,0,0] for f in pc.iterrows()])
                else:
                    pos_values =np.asarray([[f[1]['%s_Xposition'%joint], 
                                  f[1]['%s_Yposition'%joint], 
                                  f[1]['%s_Zposition'%joint]] for f in pc.iterrows()])
                
                quats = Quaternions.from_euler(np.asarray(euler_values), order=rot_order.lower(), world=False)
                
                tree_data[joint]=[
                                    [], # to store the rotation matrix
                                    []  # to store the calculated position
                                 ] 
                if track.root_name == joint:
                    tree_data[joint][0] = quats#rotmats
                    # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets'])
                    tree_data[joint][1] = pos_values
                else:
                    # for every frame i, multiply this joint's rotmat to the rotmat of its parent
                    tree_data[joint][0] = tree_data[parent][0]*quats# np.matmul(rotmats, tree_data[parent][0])

                    # add the position channel to the offset and store it in k, for every frame i
                    k = pos_values + np.asarray(track.skeleton[joint]['offsets'])

                    # multiply k to the rotmat of the parent for every frame i
                    q = tree_data[parent][0]*k #np.matmul(k.reshape(k.shape[0],1,3), tree_data[parent][0])

                    # add q to the position of the parent, for every frame i
                    tree_data[joint][1] = tree_data[parent][1] + q #q.reshape(k.shape[0],3) + tree_data[parent][1]

                # Create the corresponding columns in the new DataFrame
                pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index)
                pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index)
                pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index)


            new_track = track.clone()
            new_track.values = pos_df
            Q.append(new_track)
        return Q


    def _to_expmap(self, X):
        '''Converts Euler angles to Exponential Maps'''

        Q = []
        for track in X:
            channels = []
            titles = []
            euler_df = track.values

            # Create a new DataFrame to store the exponential map rep
            exp_df = pd.DataFrame(index=euler_df.index)

            # Copy the root positions into the new DataFrame
            rxp = '%s_Xposition'%track.root_name
            ryp = '%s_Yposition'%track.root_name
            rzp = '%s_Zposition'%track.root_name
            exp_df[rxp] = pd.Series(data=euler_df[rxp], index=exp_df.index)
            exp_df[ryp] = pd.Series(data=euler_df[ryp], index=exp_df.index)
            exp_df[rzp] = pd.Series(data=euler_df[rzp], index=exp_df.index)
            
            # List the columns that contain rotation channels
            rots = [c for c in euler_df.columns if ('rotation' in c and 'Nub' not in c)]

            # List the joints that are not end sites, i.e., have channels
            joints = (joint for joint in track.skeleton if 'Nub' not in joint)

            for joint in joints:
                r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint
                euler = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order
                exps = [Rotation(f, 'euler', from_deg=True).to_expmap() for f in euler] # Convert the eulers to exp maps
                
                # Create the corresponding columns in the new DataFrame
    
                exp_df['%s_alpha'%joint] = pd.Series(data=[e[0] for e in exps], index=exp_df.index)
                exp_df['%s_beta'%joint] = pd.Series(data=[e[1] for e in exps], index=exp_df.index)
                exp_df['%s_gamma'%joint] = pd.Series(data=[e[2] for e in exps], index=exp_df.index)

            new_track = track.clone()
            new_track.values = exp_df
            Q.append(new_track)

        return Q

    def _expmap_to_euler(self, X):
        Q = []
        for track in X:
            channels = []
            titles = []
            exp_df = track.values

            # Create a new DataFrame to store the exponential map rep
            euler_df = pd.DataFrame(index=exp_df.index)

            # Copy the root positions into the new DataFrame
            rxp = '%s_Xposition'%track.root_name
            ryp = '%s_Yposition'%track.root_name
            rzp = '%s_Zposition'%track.root_name
            euler_df[rxp] = pd.Series(data=exp_df[rxp], index=euler_df.index)
            euler_df[ryp] = pd.Series(data=exp_df[ryp], index=euler_df.index)
            euler_df[rzp] = pd.Series(data=exp_df[rzp], index=euler_df.index)
            
            # List the columns that contain rotation channels
            exp_params = [c for c in exp_df.columns if ( any(p in c for p in ['alpha', 'beta','gamma']) and 'Nub' not in c)]

            # List the joints that are not end sites, i.e., have channels
            joints = (joint for joint in track.skeleton if 'Nub' not in joint)

            for joint in joints:
                r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint
                expmap = [[f[1]['%s_alpha'%joint], f[1]['%s_beta'%joint], f[1]['%s_gamma'%joint]] for f in r.iterrows()] # Make sure the columsn are organized in xyz order
                euler_rots = [Rotation(f, 'expmap').to_euler(True)[0] for f in expmap] # Convert the eulers to exp maps
                
                # Create the corresponding columns in the new DataFrame
    
                euler_df['%s_Xrotation'%joint] = pd.Series(data=[e[0] for e in euler_rots], index=euler_df.index)
                euler_df['%s_Yrotation'%joint] = pd.Series(data=[e[1] for e in euler_rots], index=euler_df.index)
                euler_df['%s_Zrotation'%joint] = pd.Series(data=[e[2] for e in euler_rots], index=euler_df.index)

            new_track = track.clone()
            new_track.values = euler_df
            Q.append(new_track)

        return Q


class JointSelector(BaseEstimator, TransformerMixin):
    '''
    Allows for filtering the mocap data to include only the selected joints
    '''
    def __init__(self, joints, include_root=False):
        self.joints = joints
        self.include_root = include_root

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        selected_joints = []
        selected_channels = []

        if self.include_root:
            selected_joints.append(X[0].root_name)
        
        selected_joints.extend(self.joints)

        for joint_name in selected_joints:
            selected_channels.extend([o for o in X[0].values.columns if joint_name in o])
            
        Q = []


        for track in X:
            t2 = track.clone()
            
            for key in track.skeleton.keys():
                if key not in selected_joints:
                    t2.skeleton.pop(key)
            t2.values = track.values[selected_channels]

            Q.append(t2)
      

        return Q


class Numpyfier(BaseEstimator, TransformerMixin):
    '''
    Just converts the values in a MocapData object into a numpy array
    Useful for the final stage of a pipeline before training
    '''
    def __init__(self):
        pass

    def fit(self, X, y=None):
        self.org_mocap_ = X[0].clone()
        self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True)

        return self

    def transform(self, X, y=None):
        Q = []
        
        for track in X:
            Q.append(track.values.values)

        return np.array(Q)

    def inverse_transform(self, X, copy=None):
        Q = []

        for track in X:
            
            new_mocap = self.org_mocap_.clone()
            time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit='s')

            new_df =  pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns)
            
            new_mocap.values = new_df
            

            Q.append(new_mocap)

        return Q

class RootTransformer(BaseEstimator, TransformerMixin):
    def __init__(self, method):
        """
        Accepted methods:
            abdolute_translation_deltas
            pos_rot_deltas
        """
        self.method = method
    
    def fit(self, X, y=None):
        return self
    
    def transform(self, X, y=None):
        Q = []

        for track in X:
            if self.method == 'abdolute_translation_deltas':
                new_df = track.values.copy()
                xpcol = '%s_Xposition'%track.root_name
                ypcol = '%s_Yposition'%track.root_name
                zpcol = '%s_Zposition'%track.root_name


                dxpcol = '%s_dXposition'%track.root_name
                dzpcol = '%s_dZposition'%track.root_name

                dx = track.values[xpcol].diff()
                dz = track.values[zpcol].diff()    

                dx[0] = 0
                dz[0] = 0

                new_df.drop([xpcol, zpcol], axis=1, inplace=True)

                new_df[dxpcol] = dx
                new_df[dzpcol] = dz
                
                new_track = track.clone()
                new_track.values = new_df
            # end of abdolute_translation_deltas
            
            elif self.method == 'pos_rot_deltas':
                new_track = track.clone()

                # Absolute columns
                xp_col = '%s_Xposition'%track.root_name
                yp_col = '%s_Yposition'%track.root_name
                zp_col = '%s_Zposition'%track.root_name

                xr_col = '%s_Xrotation'%track.root_name
                yr_col = '%s_Yrotation'%track.root_name
                zr_col = '%s_Zrotation'%track.root_name

                # Delta columns
                dxp_col = '%s_dXposition'%track.root_name
                dzp_col = '%s_dZposition'%track.root_name

                dxr_col = '%s_dXrotation'%track.root_name
                dyr_col = '%s_dYrotation'%track.root_name
                dzr_col = '%s_dZrotation'%track.root_name


                new_df = track.values.copy()

                root_pos_x_diff = pd.Series(data=track.values[xp_col].diff(), index=new_df.index)
                root_pos_z_diff = pd.Series(data=track.values[zp_col].diff(), index=new_df.index)

                root_rot_y_diff = pd.Series(data=track.values[yr_col].diff(), index=new_df.index)
                root_rot_x_diff = pd.Series(data=track.values[xr_col].diff(), index=new_df.index)
                root_rot_z_diff = pd.Series(data=track.values[zr_col].diff(), index=new_df.index)


                root_pos_x_diff[0] = 0
                root_pos_z_diff[0] = 0

                root_rot_y_diff[0] = 0
                root_rot_x_diff[0] = 0
                root_rot_z_diff[0] = 0

                new_df.drop([xr_col, yr_col, zr_col, xp_col, zp_col], axis=1, inplace=True)

                new_df[dxp_col] = root_pos_x_diff
                new_df[dzp_col] = root_pos_z_diff

                new_df[dxr_col] = root_rot_x_diff
                new_df[dyr_col] = root_rot_y_diff
                new_df[dzr_col] = root_rot_z_diff

                new_track.values = new_df

            Q.append(new_track)

        return Q

    def inverse_transform(self, X, copy=None, start_pos=None):
        Q = []

        #TODO: simplify this implementation

        startx = 0
        startz = 0

        if start_pos is not None:
            startx, startz = start_pos

        for track in X:
            new_track = track.clone()
            if self.method == 'abdolute_translation_deltas':
                new_df = new_track.values
                xpcol = '%s_Xposition'%track.root_name
                ypcol = '%s_Yposition'%track.root_name
                zpcol = '%s_Zposition'%track.root_name


                dxpcol = '%s_dXposition'%track.root_name
                dzpcol = '%s_dZposition'%track.root_name

                dx = track.values[dxpcol].values
                dz = track.values[dzpcol].values

                recx = [startx]
                recz = [startz]

                for i in range(dx.shape[0]-1):
                    recx.append(recx[i]+dx[i+1])
                    recz.append(recz[i]+dz[i+1])

                # recx = [recx[i]+dx[i+1] for i in range(dx.shape[0]-1)]
                # recz = [recz[i]+dz[i+1] for i in range(dz.shape[0]-1)]
                # recx = dx[:-1] + dx[1:]
                # recz = dz[:-1] + dz[1:]

                new_df[xpcol] = pd.Series(data=recx, index=new_df.index)
                new_df[zpcol] = pd.Series(data=recz, index=new_df.index)

                new_df.drop([dxpcol, dzpcol], axis=1, inplace=True)
                
                new_track.values = new_df
            # end of abdolute_translation_deltas
            
            elif self.method == 'pos_rot_deltas':
                new_track = track.clone()

                # Absolute columns
                xp_col = '%s_Xposition'%track.root_name
                yp_col = '%s_Yposition'%track.root_name
                zp_col = '%s_Zposition'%track.root_name

                xr_col = '%s_Xrotation'%track.root_name
                yr_col = '%s_Yrotation'%track.root_name
                zr_col = '%s_Zrotation'%track.root_name

                # Delta columns
                dxp_col = '%s_dXposition'%track.root_name
                dzp_col = '%s_dZposition'%track.root_name

                dxr_col = '%s_dXrotation'%track.root_name
                dyr_col = '%s_dYrotation'%track.root_name
                dzr_col = '%s_dZrotation'%track.root_name


                new_df = track.values.copy()

                dx = track.values[dxp_col].values
                dz = track.values[dzp_col].values

                drx = track.values[dxr_col].values
                dry = track.values[dyr_col].values
                drz = track.values[dzr_col].values

                rec_xp = [startx]
                rec_zp = [startz]

                rec_xr = [0]
                rec_yr = [0]
                rec_zr = [0]


                for i in range(dx.shape[0]-1):
                    rec_xp.append(rec_xp[i]+dx[i+1])
                    rec_zp.append(rec_zp[i]+dz[i+1])
                    
                    rec_xr.append(rec_xr[i]+drx[i+1])
                    rec_yr.append(rec_yr[i]+dry[i+1])
                    rec_zr.append(rec_zr[i]+drz[i+1])


                new_df[xp_col] = pd.Series(data=rec_xp, index=new_df.index)
                new_df[zp_col] = pd.Series(data=rec_zp, index=new_df.index)

                new_df[xr_col] = pd.Series(data=rec_xr, index=new_df.index)
                new_df[yr_col] = pd.Series(data=rec_yr, index=new_df.index)
                new_df[zr_col] = pd.Series(data=rec_zr, index=new_df.index)

                new_df.drop([dxr_col, dyr_col, dzr_col, dxp_col, dzp_col], axis=1, inplace=True)


                new_track.values = new_df

            Q.append(new_track)

        return Q


class RootCentricPositionNormalizer(BaseEstimator, TransformerMixin):
    def __init__(self):
        pass

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        Q = []

        for track in X:
            new_track = track.clone()

            rxp = '%s_Xposition'%track.root_name
            ryp = '%s_Yposition'%track.root_name
            rzp = '%s_Zposition'%track.root_name

            projected_root_pos = track.values[[rxp, ryp, rzp]]

            projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref

            new_df = pd.DataFrame(index=track.values.index)

            all_but_root = [joint for joint in track.skeleton if track.root_name not in joint]
            # all_but_root = [joint for joint in track.skeleton]
            for joint in all_but_root:                
                new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]-projected_root_pos[rxp], index=new_df.index)
                new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]-projected_root_pos[ryp], index=new_df.index)
                new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]-projected_root_pos[rzp], index=new_df.index)
            

            # keep the root as it is now
            new_df[rxp] = track.values[rxp]
            new_df[ryp] = track.values[ryp]
            new_df[rzp] = track.values[rzp]

            new_track.values = new_df

            Q.append(new_track)
        
        return Q

    def inverse_transform(self, X, copy=None):
        Q = []

        for track in X:
            new_track = track.clone()

            rxp = '%s_Xposition'%track.root_name
            ryp = '%s_Yposition'%track.root_name
            rzp = '%s_Zposition'%track.root_name

            projected_root_pos = track.values[[rxp, ryp, rzp]]

            projected_root_pos.loc[:,ryp] = 0 # we want the root's projection on the floor plane as the ref

            new_df = pd.DataFrame(index=track.values.index)

            for joint in track.skeleton:                
                new_df['%s_Xposition'%joint] = pd.Series(data=track.values['%s_Xposition'%joint]+projected_root_pos[rxp], index=new_df.index)
                new_df['%s_Yposition'%joint] = pd.Series(data=track.values['%s_Yposition'%joint]+projected_root_pos[ryp], index=new_df.index)
                new_df['%s_Zposition'%joint] = pd.Series(data=track.values['%s_Zposition'%joint]+projected_root_pos[rzp], index=new_df.index)
                

            new_track.values = new_df

            Q.append(new_track)
        
        return Q


class Flattener(BaseEstimator, TransformerMixin):
    def __init__(self):
        pass

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return np.concatenate(X, axis=0)

class ConstantsRemover(BaseEstimator, TransformerMixin):
    '''
    For now it just looks at the first track
    '''

    def __init__(self, eps = 10e-10):
        self.eps = eps
        

    def fit(self, X, y=None):
        stds = X[0].values.std()
        cols = X[0].values.columns.values
        self.const_dims_ = [c for c in cols if (stds[c] < self.eps).any()]
        self.const_values_ = {c:X[0].values[c].values[0] for c in cols if (stds[c] < self.eps).any()}
        return self

    def transform(self, X, y=None):
        Q = []
        

        for track in X:
            t2 = track.clone()
            #for key in t2.skeleton.keys():
            #    if key in self.ConstDims_:
            #        t2.skeleton.pop(key)
            t2.values = track.values[track.values.columns.difference(self.const_dims_)]
            Q.append(t2)
        
        return Q
    
    def inverse_transform(self, X, copy=None):
        Q = []
        
        for track in X:
            t2 = track.clone()
            for d in self.const_dims_:
                t2.values[d] = self.const_values_[d]
            Q.append(t2)

        return Q

class ListStandardScaler(BaseEstimator, TransformerMixin):
    def __init__(self, is_DataFrame=False):
        self.is_DataFrame = is_DataFrame
    
    def fit(self, X, y=None):
        if self.is_DataFrame:
            X_train_flat = np.concatenate([m.values for m in X], axis=0)
        else:
            X_train_flat = np.concatenate([m for m in X], axis=0)

        self.data_mean_ = np.mean(X_train_flat, axis=0)
        self.data_std_ = np.std(X_train_flat, axis=0)

        return self
    
    def transform(self, X, y=None):
        Q = []
        
        for track in X:
            if self.is_DataFrame:
                normalized_track = track.copy()
                normalized_track.values = (track.values - self.data_mean_) / self.data_std_
            else:
                normalized_track = (track - self.data_mean_) / self.data_std_

            Q.append(normalized_track)
        
        if self.is_DataFrame:
            return Q
        else:
            return np.array(Q)

    def inverse_transform(self, X, copy=None):
        Q = []
        
        for track in X:
            
            if self.is_DataFrame:
                unnormalized_track = track.copy()
                unnormalized_track.values = (track.values * self.data_std_) + self.data_mean_
            else:
                unnormalized_track = (track * self.data_std_) + self.data_mean_

            Q.append(unnormalized_track)
        
        if self.is_DataFrame:
            return Q
        else:
            return np.array(Q)

class DownSampler(BaseEstimator, TransformerMixin):
    def __init__(self, rate):
        self.rate = rate
        
    
    def fit(self, X, y=None):    

        return self
    
    def transform(self, X, y=None):
        Q = []
        
        for track in X:
            #print(track.values.size)
            #new_track = track.clone()                            
            #new_track.values = track.values[0:-1:self.rate]            
            #print(new_track.values.size)
            new_track = track[0:-1:self.rate]
            Q.append(new_track)
        
        return Q
        
    def inverse_transform(self, X, copy=None):
      return X


#TODO: JointsSelector (x)
#TODO: SegmentMaker
#TODO: DynamicFeaturesAdder
#TODO: ShapeFeaturesAdder
#TODO: DataFrameNumpier (x)

class TemplateTransform(BaseEstimator, TransformerMixin):
    def __init__(self):
        pass

    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return X

class UnsupportedParamError(Exception):
    def __init__(self, message):
        self.message = message