GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323 4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU. ## Overview There are two ways of loading GPTQ models in the web UI at the moment: * Using AutoGPTQ: * supports more models * standardized (no need to guess any parameter) * is a proper Python library * ~no wheels are presently available so it requires manual compilation~ * supports loading both triton and cuda models * Using GPTQ-for-LLaMa directly: * faster CPU offloading * faster multi-GPU inference * supports loading LoRAs using a monkey patch * requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it * supports either only cuda or only triton depending on the branch For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ ## AutoGPTQ ### Installation No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands: ``` conda activate textgen git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ pip install . ``` The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)). ### Usage When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag: ``` python server.py --autogptq --model model_name ``` Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model. ### Offloading In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA. For CPU offloading: ``` python server.py --autogptq --gpu-memory 3000MiB --model model_name ``` For multi-GPU inference: ``` python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name ``` ### Using LoRAs with AutoGPTQ Not supported yet. ## GPTQ-for-LLaMa GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa Different branches of GPTQ-for-LLaMa are currently available, including: | Branch | Comment | |----|----| | [Old CUDA branch (recommended)](https://github.com/oobabooga/GPTQ-for-LLaMa/) | The fastest branch, works on Windows and Linux. | | [Up-to-date triton branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa) | Slightly more precise than the old CUDA branch from 13b upwards, significantly more precise for 7b. 2x slower for small context size and only works on Linux. | | [Up-to-date CUDA branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda) | As precise as the up-to-date triton branch, 10x slower than the old cuda branch for small context size. | Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI. ### Installation Start by cloning GPTQ-for-LLaMa into your `text-generation-webui/repositories` folder: ``` mkdir repositories cd repositories git clone https://github.com/oobabooga/GPTQ-for-LLaMa.git -b cuda ``` If you want to you to use the up-to-date CUDA or triton branches instead of the old CUDA branch, use these commands: ``` git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b cuda ``` ``` git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton ``` Next you need to install the CUDA extensions. You can do that either by installing the precompiled wheels, or by compiling the wheels yourself. ### Precompiled wheels Kindly provided by our friend jllllll: https://github.com/jllllll/GPTQ-for-LLaMa-Wheels Windows: ``` pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/main/quant_cuda-0.0.0-cp310-cp310-win_amd64.whl ``` Linux: ``` pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/Linux-x64/quant_cuda-0.0.0-cp310-cp310-linux_x86_64.whl ``` ### Manual installation #### Step 1: install nvcc ``` conda activate textgen conda install -c conda-forge cudatoolkit-dev ``` The command above takes some 10 minutes to run and shows no progress bar or updates along the way. You are also going to need to have a C++ compiler installed. On Linux, `sudo apt install build-essential` or equivalent is enough. If you're using an older version of CUDA toolkit (e.g. 11.7) but the latest version of `gcc` and `g++` (12.0+), you should downgrade with: `conda install -c conda-forge gxx==11.3.0`. Kernel compilation will fail otherwise. #### Step 2: compile the CUDA extensions ``` cd repositories/GPTQ-for-LLaMa python setup_cuda.py install ``` ### Getting pre-converted LLaMA weights These are models that you can simply download and place in your `models` folder. * Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 * Converted with `group-size` (better from 13b upwards): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105 ⚠️ The tokenizer files in the sources above may be outdated. Make sure to obtain the universal LLaMA tokenizer as described [here](https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md#option-1-pre-converted-weights). ### Starting the web UI: Use the `--gptq-for-llama` flag. For the models converted without `group-size`: ``` python server.py --model llama-7b-4bit --gptq-for-llama ``` For the models converted with `group-size`: ``` python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128 ``` The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases. ### CPU offloading It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU. With this command, I can run llama-7b with 4GB VRAM: ``` python server.py --model llama-7b-4bit --pre_layer 20 ``` This is the performance: ``` Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens) ``` You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU. ### Using LoRAs with GPTQ-for-LLaMa This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit To use it: 1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder: ``` cd text-generation-webui/repositories git clone https://github.com/johnsmith0031/alpaca_lora_4bit ``` ⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0` 2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command: ``` pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit ``` 3. Start the UI with the `--monkey-patch` flag: ``` python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch ```