# vector_store.py import faiss import numpy as np def create_faiss_index(vectors): try: dim = vectors[0].shape[0] index = faiss.IndexFlatL2(dim) index.add(np.array(vectors).astype("float32")) return index except Exception as e: print(f"❌ Error creating FAISS index: {e}") return None def search_similar_cvs(query_vector, index, k=3): try: query_vector = np.array([query_vector]).astype("float32") distances, indices = index.search(query_vector, k) return indices[0].tolist() except Exception as e: print(f"❌ Error searching index: {e}") return []