import torch import librosa from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration from gtts import gTTS import gradio as gr import spaces print("Using GPU for operations when available") # Function to safely load pipeline within a GPU-decorated function @spaces.GPU def load_pipeline(model_name, **kwargs): try: device = 0 if torch.cuda.is_available() else "cpu" return pipeline(model=model_name, device=device, **kwargs) except Exception as e: print(f"Error loading {model_name} pipeline: {e}") return None # Load Whisper model for speech recognition within a GPU-decorated function @spaces.GPU def load_whisper(): try: device = 0 if torch.cuda.is_available() else "cpu" processor = WhisperProcessor.from_pretrained("openai/whisper-small") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device) return processor, model except Exception as e: print(f"Error loading Whisper model: {e}") return None, None # Load sarvam-2b for text generation within a GPU-decorated function @spaces.GPU def load_sarvam(): return load_pipeline('sarvamai/sarvam-2b-v0.5') # Process audio input within a GPU-decorated function @spaces.GPU def process_audio_input(audio, whisper_processor, whisper_model): if whisper_processor is None or whisper_model is None: return "Error: Speech recognition model is not available. Please type your message instead." try: audio, sr = librosa.load(audio, sr=16000) input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device) predicted_ids = whisper_model.generate(input_features) transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription except Exception as e: return f"Error processing audio: {str(e)}. Please type your message instead." # Generate response within a GPU-decorated function @spaces.GPU def text_to_speech(text, lang='hi'): try: # Use a better TTS engine for Indic languages if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']: # You might want to use a different TTS library here # For example, you could use the Google Cloud Text-to-Speech API # or a specialized Indic language TTS library # This is a placeholder for a better Indic TTS solution tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD else: tts = gTTS(text=text, lang=lang) tts.save("response.mp3") return "response.mp3" except Exception as e: print(f"Error in text-to-speech: {str(e)}") return None # Replace the existing detect_language function with this improved version def detect_language(text): lang_codes = { 'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada', 'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi', 'ta': 'Tamil', 'te': 'Telugu', 'en': 'English' } try: detected_lang = detect(text) return detected_lang if detected_lang in lang_codes else 'en' except: # Fallback to simple script-based detection for code, lang in lang_codes.items(): if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script return 'hi' return 'en' # Default to English if no Indic script is detected @spaces.GPU def generate_response(transcription, sarvam_pipe): if sarvam_pipe is None: return "Error: Text generation model is not available." try: # Generate response using the sarvam-2b model response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text'] return response except Exception as e: return f"Error generating response: {str(e)}" @spaces.GPU def indic_language_assistant(input_type, audio_input, text_input): try: # Load models within the GPU-decorated function whisper_processor, whisper_model = load_whisper() sarvam_pipe = load_sarvam() if input_type == "audio" and audio_input is not None: transcription = process_audio_input(audio_input, whisper_processor, whisper_model) elif input_type == "text" and text_input: transcription = text_input else: return "Please provide either audio or text input.", "No input provided.", None response = generate_response(transcription, sarvam_pipe) lang = detect_language(response) audio_response = text_to_speech(response, lang) return transcription, response, audio_response except Exception as e: error_message = f"An error occurred: {str(e)}" return error_message, error_message, None # Updated Custom CSS custom_css = """ body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif; } #custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px; } #custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem; } #custom-header h1 .blue { color: #60a5fa; } #custom-header h1 .pink { color: #f472b6; } #custom-header h2 { font-size: 1.5rem; color: #94a3b8; } .suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0; } .suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px; } .suggestion:hover { transform: translateY(-5px); } .suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%; } .gradio-container { max-width: 100% !important; } #component-0, #component-1, #component-2 { max-width: 100% !important; } footer { text-align: center; margin-top: 2rem; color: #64748b; } """ # Custom HTML for the header custom_header = """

Hello, SarvM.AI

How can I help you today?

""" # Custom HTML for suggestions custom_suggestions = """
🎤

Speak in any Indic language

⌨️

Type in any Indic language

🤖

Get AI-generated responses

🔊

Listen to audio responses

""" # Create Gradio interface with gr.Blocks(css=custom_css, theme=gr.themes.Base().set( body_background_fill="#0b0f19", body_text_color="#e2e8f0", button_primary_background_fill="#3b82f6", button_primary_background_fill_hover="#2563eb", button_primary_text_color="white", block_title_text_color="#94a3b8", block_label_text_color="#94a3b8", )) as iface: gr.HTML(custom_header) gr.HTML(custom_suggestions) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Indic Assistant") input_type = gr.Radio(["audio", "text"], label="Input Type", value="audio") audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)") text_input = gr.Textbox(label="Type your message (if text input selected)") submit_btn = gr.Button("Submit") output_transcription = gr.Textbox(label="Transcription/Input") output_response = gr.Textbox(label="Generated Response") output_audio = gr.Audio(label="Audio Response") submit_btn.click( fn=indic_language_assistant, inputs=[input_type, audio_input, text_input], outputs=[output_transcription, output_response, output_audio] ) gr.HTML("") # Launch the app iface.launch()