import gradio as gr # Load the model from Hugging Face model_name = "comment-toxicity-analyzer/toxicity_det" api_key = "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" interface = gr.load(model_name, src="spaces", hf_api_key=api_key) def score_comment(comment): """ This function will take in a comment and then pass it through a prediction pipeline. """ # Make predictions using the Gradio interface results = interface.predict([comment]) # Process the results text = "" for idx, col in enumerate(["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]): text += f"{col}: {results[0][col] > 0.40}\n" return text # Define the Gradio interface interface = gr.Interface( fn=score_comment, inputs=gr.inputs.Textbox(lines=2, placeholder="Comment to score"), outputs="text" ) # Launch the interface on a local server # if __name__ == "__main__": interface.launch(share=True)