import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer # Load models chatbot_model = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(chatbot_model) model = AutoModelForCausalLM.from_pretrained(chatbot_model) emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # Store chat histories chat_histories = {} def chatbot_response(message, session_id="default"): if session_id not in chat_histories: chat_histories[session_id] = [] # Generate response input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt") output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # Detect emotion emotion_result = emotion_pipeline(message) emotion = emotion_result[0]["label"] score = float(emotion_result[0]["score"]) # Store history chat_histories[session_id].append((message, response)) return response, emotion, score # ------------------ Web Interface ------------------ with gr.Blocks() as demo: gr.Markdown("# 🤖 Mental Health Chatbot") with gr.Row(): with gr.Column(): chatbot = gr.Chatbot() msg = gr.Textbox(label="Your Message") session_id = gr.Textbox(label="Session ID", value="default") btn = gr.Button("Send") clear_btn = gr.Button("Clear History") with gr.Column(): emotion_out = gr.Textbox(label="Detected Emotion") score_out = gr.Number(label="Confidence Score") def respond(message, chat_history, session_id): response, emotion, score = chatbot_response(message, session_id) chat_history.append((message, response)) return "", chat_history, emotion, score btn.click(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out]) msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out]) clear_btn.click(lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0), inputs=[session_id], outputs=[chatbot, emotion_out, score_out]) # ------------------ API Endpoint ------------------ api_interface = gr.Interface( fn=chatbot_response, # Exposing the chatbot function inputs=[gr.Textbox(label="Message"), gr.Textbox(label="Session ID", value="default")], outputs=[gr.Textbox(label="Chatbot Response"), gr.Textbox(label="Detected Emotion"), gr.Number(label="Confidence Score")] ) # Launch Gradio interface and API demo.launch(share=True, server_name="0.0.0.0", server_port=7860) api_interface.launch(share=True, server_name="0.0.0.0", server_port=7861)