import argparse import pickle import torch from torch import nn import numpy as np from scipy import linalg from tqdm import tqdm from model import Generator from calc_inception import load_patched_inception_v3 @torch.no_grad() def extract_feature_from_samples( generator, inception, truncation, truncation_latent, batch_size, n_sample, device ): n_batch = n_sample // batch_size resid = n_sample - (n_batch * batch_size) batch_sizes = [batch_size] * n_batch + [resid] features = [] for batch in tqdm(batch_sizes): latent = torch.randn(batch, 512, device=device) img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent) feat = inception(img)[0].view(img.shape[0], -1) features.append(feat.to('cpu')) features = torch.cat(features, 0) return features def calc_fid(sample_mean, sample_cov, real_mean, real_cov, eps=1e-6): cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False) if not np.isfinite(cov_sqrt).all(): print('product of cov matrices is singular') offset = np.eye(sample_cov.shape[0]) * eps cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset)) if np.iscomplexobj(cov_sqrt): if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3): m = np.max(np.abs(cov_sqrt.imag)) raise ValueError(f'Imaginary component {m}') cov_sqrt = cov_sqrt.real mean_diff = sample_mean - real_mean mean_norm = mean_diff @ mean_diff trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt) fid = mean_norm + trace return fid if __name__ == '__main__': device = 'cuda' parser = argparse.ArgumentParser() parser.add_argument('--truncation', type=float, default=1) parser.add_argument('--truncation_mean', type=int, default=4096) parser.add_argument('--batch', type=int, default=64) parser.add_argument('--n_sample', type=int, default=50000) parser.add_argument('--size', type=int, default=256) parser.add_argument('--inception', type=str, default=None, required=True) parser.add_argument('ckpt', metavar='CHECKPOINT') args = parser.parse_args() ckpt = torch.load(args.ckpt) g = Generator(args.size, 512, 8).to(device) g.load_state_dict(ckpt['g_ema']) g = nn.DataParallel(g) g.eval() if args.truncation < 1: with torch.no_grad(): mean_latent = g.mean_latent(args.truncation_mean) else: mean_latent = None inception = nn.DataParallel(load_patched_inception_v3()).to(device) inception.eval() features = extract_feature_from_samples( g, inception, args.truncation, mean_latent, args.batch, args.n_sample, device ).numpy() print(f'extracted {features.shape[0]} features') sample_mean = np.mean(features, 0) sample_cov = np.cov(features, rowvar=False) with open(args.inception, 'rb') as f: embeds = pickle.load(f) real_mean = embeds['mean'] real_cov = embeds['cov'] fid = calc_fid(sample_mean, sample_cov, real_mean, real_cov) print('fid:', fid)