import gradio as gr import cv2 import numpy as np import os import json from openvino.runtime import Core # Assuming you're using OpenVINO from tqdm import tqdm from PIL import Image from tf_post_processing import non_max_suppression #,optimized_object_detection # Load the OpenVINO model classification_model_xml = r"D:\Research\Auto_CAD_detection\runs\detect\yolo11_Auto_CAD_detection_params6\weights\best_openvino_model\best.xml" core = Core() config = { "INFERENCE_NUM_THREADS": 2, "ENABLE_CPU_PINNING": True } model = core.read_model(model=classification_model_xml) compiled_model = core.compile_model(model=model, device_name="CPU", config=config) label_to_class_text = {0: 'range', 1: ' entry door', 2: 'kitchen sink', 3: ' bathroom sink', 4: 'toilet', 5: 'double folding door', 6: 'window', 7: 'shower', 8: 'bathtub', 9: 'single folding door', 10: 'dishwasher', 11: 'refrigerator'} # Function to perform inference def predict_image(image): # Convert PIL Image to numpy array (OpenCV uses numpy arrays) image = np.array(image) # Resize, preprocess, and reshape the input image img_size = 960 resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 resized_image = resized_image.transpose(2, 0, 1) reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) im_height, im_width, _ = image.shape output_numpy = compiled_model(reshaped_image)[0] results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] # Prepare output paths predictions = [] # Draw boxes and collect prediction data for result in results: boxes = result[:4] prob = result[4] classes = int(result[5]) x1, y1, x2, y2 = np.uint16([ boxes[0] * im_width, boxes[1] * im_height, boxes[2] * im_width, boxes[3] * im_height ]) if prob > 0.2: cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 0), 2) label_text = f"{classes} {round(prob, 2)}" cv2.putText(image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2) # Store prediction info in a JSON-compatible format predictions.append({ "class": label_to_class_text[classes], "probability": round(float(prob), 2), "coordinates": { "xmin": int(x1), "ymin": int(y1), "xmax": int(x2), "ymax": int(y2) } }) # Convert the processed image back to PIL Image for Gradio pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) return pil_image, json.dumps(predictions, indent=4) # Sample images for Gradio examples # Define sample images for user convenience sample_images = [ "./sample/10_2.jpg", "./sample/10_10.jpg", "./sample/10_12.jpg" ] # Gradio UI setup with examples gr_interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), # Updated to gr.Image for image input outputs=[gr.Image(type="pil"), gr.Textbox()], # Updated to gr.Image and gr.Textbox title="House CAD Design Object Detection", description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.", examples=sample_images # Add the examples here ) # Launch the Gradio interface if run as main if __name__ == "__main__": gr_interface.launch()