import gradio as gr import matplotlib.pyplot as plt import shap import hopsworks import pandas as pd import joblib from sklearn.pipeline import make_pipeline df = pd.DataFrame( [[20, 20, 30, 40]], columns=["age", "bmi", "hba1c_level", "blood_glucose_level"], ) # Assuming the hopsworks login and model retrieval code works as expected project = hopsworks.login( project="SonyaStern_Lab1", api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1", ) mr = project.get_model_registry() model = mr.get_model("diabetes_gan_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/diabetes_gan_model.pkl") print("printing model pipeline:", model) rf_classifier = model.named_steps["randomforestclassifier"] transformer_pipeline = make_pipeline( *[ step for name, step in model.named_steps.items() if name != "randomforestclassifier" ] ) transformed_df = transformer_pipeline.transform(df) # rf_model = model.steps[-1][1] # Load your model def generate_plots(): # Create the first plot as before fig1, ax1 = plt.subplots() ax1.plot([1, 2, 3], [4, 5, 6]) ax1.set_title("Plot 1") # Generate the SHAP waterfall plot for fig2 explainer = shap.TreeExplainer(rf_classifier) shap_values = explainer.shap_values(transformed_df) predicted_class = rf_classifier.predict(transformed_df)[0] shap_values_for_predicted_class = shap_values[predicted_class] # base_value = explainer.expected_value[1] fig2 = plt.figure() # Create a new figure for SHAP plot shap.waterfall_plot( explainer.expected_value[predicted_class], shap_values_for_predicted_class[0] ) plt.title("SHAP Waterfall Plot") # Optionally set a title for the SHAP plot return fig1, fig2 # Generate plots once and store them fig1, fig2 = generate_plots() with gr.Blocks() as demo: with gr.Row(): gr.Plot(fig1) # Display first plot in the first row with gr.Row(): gr.Plot(fig2) # Display SHAP waterfall plot in the second row demo.launch()